Publications by authors named "Panarat Arunrattiyakorn"

Aims: To isolate polystyrene-degrading bacteria from the gut of superworms and investigate their ability to degrade polystyrene (PS).

Methods And Results: Three PS-degrading bacteria identified as Pseudomonas sp. EDB1, Bacillus sp.

View Article and Find Full Text PDF

Biotransformation of β-mangostin (1) by the endophytic fungus Xylaria feejeensis GM06 afforded hexacyclic ring-fused xanthenes with an unprecedented hexacyclic heterocylic skeleton. β-Mangostin (1) was transformed to two diastereomeric pairs of enantiomers, mangostafeejin A [(-)-2a/(+)-2b)] and mangostafeejin B [(-)-3a/(+)-3b)]. The chemical structures of the transformation products were elucidated by analysis of NMR and MS data, and the structure of mangostafeejin A [(-)-2a/(+)-2b)] was confirmed by single-crystal X-ray diffraction analysis.

View Article and Find Full Text PDF

Microorganisms produce plant growth regulators, such as auxins, cytokinins and gibberellins, to promote plant growth. Auxins are a group of compounds with an indole ring that have a positive effect on plant growth. Indole-3-acetic acid (IAA) is a plant growth hormone classified as an indole derivative of the auxin family.

View Article and Find Full Text PDF

Indole 3-acetic acid (IAA) is the principal hormone which regulates various developmental and physiological processes in plants. IAA production is considered as a key trait for supporting plant growth. Hence, in this study, production of indole-3-acetic acid (IAA) by a basidiomycetous red yeast Rhodosporidium paludigenum DMKU-RP301 (AB920314) was investigated and improved by the optimization of the culture medium and culture conditions using one factor at a time (OFAT) and response surface methodology (RSM).

View Article and Find Full Text PDF

A total of 1035 yeast isolates, obtained from rice and sugar cane leaves, were screened primarily for indole-3-acetic acid (IAA) production. Thirteen isolates were selected, due to their IAA production ranging from 1.2 to 29.

View Article and Find Full Text PDF

α-Mangostin (1), a prenylated xanthone isolated from the fruit hull of Garcinia mangostana L., was individually metabolized by two fungi, Colletotrichum gloeosporioides (EYL131) and Neosartorya spathulata (EYR042), repectively. Incubation of 1 with C.

View Article and Find Full Text PDF

We have previously isolated cyclo(L-Pro-L-Tyr) and cyclo(L-Phe-L-Pro) from an actinomycete by a novel enzymatic conversion-guided method. Their tetradehydro derivatives, cyclo(DeltaPro-DeltaTyr) and cyclo(DeltaPhe-DeltaPro), were enzymatically prepared. Neither of them inhibited cell division, in contrast to other tetradehydro cyclic dipeptides prepared previously.

View Article and Find Full Text PDF

The aim of this work was to study chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. The culture produced two biosurfactants, a and b, which showed strong activity and were identified as L-rhamnopyranosyl-L-rhamnopyranosyl-beta-hydroxydecanoyl-beta-hydroxydecanoate or Rha-Rha-C10-C10 and L-rhamnopyranosyl-L-rhamnopyranosyl-beta-hydroxydecanoyl-beta-hydroxydodecanoate or Rha-Rha-C10-C12, respectively. Both compounds exhibited higher surfactant activities tested by the drop collapse test than several artificial surfactants such as SDS and Tween 80.

View Article and Find Full Text PDF

The aim of this work was to study chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. The culture produced two biosurfactants, a and b, which showed strong activity and were identified as L-rhamnopyranosyl-L-rhamnopyranosyl-beta-hydroxydecanoyl-beta-hydroxydecanoate or Rha-Rha C10-C10 and L-rhamnopyranosyl-L-rhamnopyranosyl-beta-hydroxydecanoyl-beta-hydroxydodecanoate or Rha-Rha C(10)-C(12), respectively. Both compounds exhibited higher surfactant activities tested by the drop collapse test than several artificial surfactants such as SDS and Tween 80.

View Article and Find Full Text PDF

We developed a method for screening cyclic dipeptide-producing microbes by enzymatic conversion. In this method, cyclic dipeptides are detected by the combination of: (i) conversion of cyclic dipeptides to dehydro cyclic dipeptides by cyclo(Leu-Phe) oxidase and (ii) detection of the dehydro derivative by UV spectrophotometry using TLC or HPLC analysis based on the absorbance change caused by the conversion. Using this method, the actinomycete strain A8 was isolated as a cyclic dipeptide-producing strain.

View Article and Find Full Text PDF