Surface-Enhanced Raman Spectroscopy (SERS) is a powerful, non-destructive technique for enhancing molecular spectra, first discovered in 1974. This study investigates the enhancement of Raman signals from single- and few-layer molybdenum disulfide (MoS) when interacting with silver nanoparticles. We synthesized a MoS membrane primarily consisting of monolayers and bilayers through a wet chemical vapor deposition method using metal salts.
View Article and Find Full Text PDFTHz radiation emitted by ferromagnetic/non-magnetic bilayers is a new emergent field in ultra-fast spin physics phenomena with a lot of potential for technological applications in the terahertz (THz) region of the electromagnetic spectrum. The role of antiferromagnetic layers in the THz emission process is being heavily investigated at the moment. In this work, we fabricate trilayers in the form of Co/CoO/Pt and Ni/NiO/Pt with the aim of studying the magnetic properties and probing the role of very thin antiferromagnetic interlayers like NiO and CoO in transporting ultrafast spin current.
View Article and Find Full Text PDFCo/CoO multilayers are fabricated by means of radio-frequency magnetron sputtering. For the formation of each multilayer period, a Co layer is initially produced followed by natural oxidation. Platinum is used not only as buffer and capping layers, but also in the form of intermediate ultrathin layers to enhance perpendicular magnetic anisotropy.
View Article and Find Full Text PDFRadio frequency magnetron sputtering conducted in a high vacuum with a base pressure of 1×10-6 mbar was used to deposit ultrathin palladium films on Corning glass. The thickness of these films ranged from 0.4 to 13 nanometers.
View Article and Find Full Text PDFUltrathin NiO films in the thickness range between 1 and 27 nm have been deposited on high-quality quartz substrates by direct magnetron sputtering under a rough vacuum with a base pressure of 2 × 10 mbar. The sputtering target was metallic Ni; however, due to the rough vacuum a precursor material was grown in which most of Ni was already oxidized. Subsequent short annealing at temperatures of about 600 °C in a furnace in air resulted in NiO with high crystallinity quality, as atomic force microscopy revealed.
View Article and Find Full Text PDFCobalt-based multilayers with excellent sequencing are grown via radiofrequency magnetron sputtering with the use of one Co target and natural oxidation. The Co layers are continuous, fully textured {111} and have the face centered cubic structure. At the end of deposition of each Co layer air is let to flow into the vacuum chamber via a fine (leak) valve.
View Article and Find Full Text PDFPatterning of semiconductors results in the fabrication of micro- and nano-structures, which are desired in modern technologies. Such a patterning is usually realized with the help of e-beam-, high-energy ion-, X-ray- or laser-assisted techniques, which demand expensive equipments. In this work we present a simple cost-effective method realized via a radio-frequency driven magnetron-sputtering head in high vacuum.
View Article and Find Full Text PDFPioneer works in ultrathin magnetic films have shown perpendicular magnetic domains in the demagnetized state. The source of this perpendicular anisotropy is the interface anisotropy developed at the interface. Similar domains could be observed in tetragonally distorted ultrathin films due to the magnetoelastic anisotropy.
View Article and Find Full Text PDFThe orientation of the lamellae formed by the phase separation of symmetric diblock copolymer thin films is strongly affected by the wetting properties of the polymer blocks with respect to the substrate. On bare silicon wafers the lamellae of polystyrene-b-polymethylmethacrylate thin films tend to order parallel to the wafer surface, with the polymethylmethacrylate block preferentially wetting silicon. We have developed a methodology for inducing the arrangement of lamellae perpendicular to the substrate by using chemically modified substrates.
View Article and Find Full Text PDFWe report on the growth of thin Ni films by radio frequency magnetron sputtering in Ar-plasma. The growth temperature was about 350 K and the films were deposited on various substrates such as glass, silicon, sapphire and alumina. The thickness of the thinnest films was estimated by the appearance of Kiessig fringes up to about 2theta = 8 degrees in the small-angle X-ray diffraction pattern, as expected for high-quality atomically-flat thin films.
View Article and Find Full Text PDFNanoscale Ni films in the thickness range 15-500 nm were grown on various substrates, such as amorphous glass, single crystalline silicon and sapphire, and polycrystalline alumina, at a temperature of about 350 K by radio frequency magnetron sputtering. It is demonstrated, via X-ray diffraction and high-resolution transmission electron microscopy, that there is an Ar-gas pressure window that favors the growth of stable single-phase hexagonal nanocrystalline Ni films regardless of the film thickness and the kind of the substrate. At lower or higher Ar pressures the films grow in the regular face centered cubic phase of Ni.
View Article and Find Full Text PDF