The complement system is a multicomponent and multifunctional arm of the innate immune system. Complement contributes to non-specific host defence and maintains homeostasis through multifaceted processes and pathways, including crosstalk with the adaptive immune system, the contact (coagulation) and the kinin systems, and alarmin high-mobility group box 1. Complement is also present intracellularly, orchestrating a wide range of housekeeping and physiological processes in both immune and nonimmune cells, thus showing its more sophisticated roles beyond innate immunity, but its roles are still controversial.
View Article and Find Full Text PDFThe complement system, professional phagocytes and other cells such as Natural killer cells and mast cells are among the important components of the innate arm of the immune system. These constituents provide an orchestrated array of defences and responses against tissue injury and foreign particles, including nanopharmaceuticals. While interception of nanopharmaceuticals by the immune system is beneficial for immunomodulation and treatment of phagocytic cell disorders, it is imperative to understand the multifaceted mechanisms by which nanopharmaceuticals interacts with the immune system and evaluate the subsequent balance of beneficial versus adverse reactions.
View Article and Find Full Text PDFThe contribution of the complement system to non-specific host defence and maintenance of homeostasis is well appreciated. Many particulate systems trigger complement activation but the underlying mechanisms are still poorly understood. Activation of the complement cascade could lead to particle opsonisation by the cleavage products of the third complement protein and might promote inflammatory reactions.
View Article and Find Full Text PDFComplement is an enzymatic humoral pattern-recognition defence system of the body. Non-specific deposition of blood biomolecules on nanomedicines triggers complement activation through the alternative pathway, but complement-triggering mechanisms of nanomaterials with dimensions comparable to or smaller than many globular blood proteins are unknown. Here we study this using a library of <6 nm poly(amido amine) dendrimers bearing different end-terminal functional groups.
View Article and Find Full Text PDFIn this paper we describe a straightforward supramolecular strategy to encapsulate silicon phthalocyanine (SiPc) photosensitizers (PS) in polymeric micelles made of poly(ε-caprolactone)-b-methoxypoly(ethylene glycol) (PCL-PEG) block copolymers. While PCL-PEG micelles are promising nanocarriers based on their biocompatibility and biodegradability, the design of our new PS favors their encapsulation. In particular, they combine two axial benzoyl substituents, each of them carrying either three hydrophilic methoxy(triethylenoxy) chains (1), three hydrophobic dodecyloxy chains (3), or both kinds of chains (2).
View Article and Find Full Text PDFSelective elimination of macrophages by photodynamic therapy (PDT) is a new and promising therapeutic modality for the reduction of atherosclerotic plaques. m-Tetra(hydroxyphenyl)chlorin (mTHPC, or Temoporfin) may be suitable as photosensitizer for this application, as it is currently used in the clinic for cancer PDT. In the present study, mTHPC was encapsulated in polymeric micelles based on benzyl-poly(ε-caprolactone)-b-methoxy poly(ethylene glycol) (Ben-PCL-mPEG) using a film hydration method, with loading capacity of 17%.
View Article and Find Full Text PDFWe report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum of the fluorophore was not affected by pH and temperature. Since the stoichiometry of the fluorophore to the dendrimer is 1:1, we were able to directly compare uptake kinetics, the mode of uptake, trafficking and safety of dendrimers of different end-terminal functionality (carboxylated vs.
View Article and Find Full Text PDFNanoscale Res Lett
May 2015
Photodynamic therapy (PDT) involves the action of photons on photosensitive molecules, where atomic oxygen or OH(-) molecular species are locally released on pathogenic human cells, which are mainly carcinogenic, thus causing cell necrosis. The efficacy of PDT depends on the local nanothermodynamic conditions near the cell/nanodrug system that control both the level of intracellular translocation of nanoparticles in the pathogenic cell and their agglomeration on the cell membrane. Dendrimers are considered one of the most effective and promising drug carriers because of their relatively low toxicity and negligible activation of complementary reactions.
View Article and Find Full Text PDFDendrimers are three-dimensional macromolecular structures originating from a central core molecule and surrounded by successive addition of branching layers (generation). These structures exhibit a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, as well as multivalency. Collectively, these physicochemical characteristics together with advancements in design of biodegradable backbones have conferred many applications to dendrimers in formulation science and nanopharmaceutical developments.
View Article and Find Full Text PDFThe efficiency of penetration of nanodrugs through cell membranes imposes further complexity due to nanothermodynamic and entropic potentials at interfaces. Action of nanodrugs is effective after cell membrane penetration. Contrary to diffusion of water diluted common molecular drugs, nanosize imposes an increasing transport complexity at boundaries and interfaces (e.
View Article and Find Full Text PDF