Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.
View Article and Find Full Text PDFSevere heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates.
View Article and Find Full Text PDFThe ring-forming AAA+ hexamer ClpC1 associates with the peptidase ClpP1P2 to form a central ATP-driven protease in Mycobacterium tuberculosis (Mtb). ClpC1 is essential for Mtb viability and has been identified as the target of antibacterial peptides like CyclomarinA (CymA) that exhibit strong toxicity toward Mtb. The mechanistic actions of these drugs are poorly understood.
View Article and Find Full Text PDFBacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins.
View Article and Find Full Text PDFBacterial survival during lethal heat stress relies on the cellular ability to reactivate aggregated proteins. This activity is typically executed by the canonical 70-kDa heat shock protein (Hsp70)-ClpB bichaperone disaggregase, which is most widespread in bacteria. The ClpB disaggregase is a member of the ATPase associated with diverse cellular activities protein family and exhibits an ATP-driven threading activity.
View Article and Find Full Text PDFMol Microbiol
February 2021
The ubiquitous human commensal Escherichia coli has been well investigated through its model representative E. coli K-12. In this work, we initially characterized E.
View Article and Find Full Text PDFElevation of temperature within and above the physiological limit causes the unfolding and aggregation of cellular proteins, which can ultimately lead to cell death. Bacteria are therefore equipped with Hsp100 disaggregation machines that revert the aggregation process and reactivate proteins otherwise lost by aggregation. In Gram-negative bacteria, two disaggregation systems have been described: the widespread ClpB disaggregase, which requires cooperation with an Hsp70 chaperone, and the standalone ClpG disaggregase.
View Article and Find Full Text PDF