The composite coating can effectively inhibit bacterial proliferation and promote the expression of bone-building genes in-vitro. Therefore, a novel production was used to produce poly-ether-ether-ketone, and reduced graphene oxide (PEEK-rGO) scaffolds with ratios of 1-3%, combining a different lattice for a bone implant. An inexpensive method was developed to prepare the new coatings on the PEEK scaffold with reduced graphene oxide (rGO).
View Article and Find Full Text PDFIn this work, we report the synthesis and study of nanocomposites with a biobased epoxy/amine (Epilok 60-600G/Curamine 30-952) matrix reinforced with reduced graphene oxide (rGO) or functionalised with 3-glycidoxypropyltrimethoxysilane (GLYMO-rGO). These graphene related materials (GRMs) were first dispersed into a Curamine hardener using bath ultrasonication, followed by the addition of epoxy resin. Curing kinetics were studied by DSC under non-isothermal and isothermal conditions.
View Article and Find Full Text PDFSaturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.
View Article and Find Full Text PDFWe report the exfoliation of graphite in aqueous solutions under high shear rate [∼ 10 s] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below ∼2Ω/□.
View Article and Find Full Text PDFThe purpose of the study was to appraise the effect of loading force magnitude on the determination of the elastic modulus of the anterior lens capsule through atomic force microscopy. Four human anterior lens capsules taken during phacoemulsification cataract surgery were studied, free of epithelial cells, with atomic force microscopy. For the experiment, five different indentation loading forces were applied to near areas of the specimen.
View Article and Find Full Text PDFBackground: Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored.
View Article and Find Full Text PDFBiodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique.
View Article and Find Full Text PDFThis work was aimed at the study of some physical properties of two current light-cured dental resin composites, Rok (hybrid) and Ice (nanohydrid). As filler they both contain strontium aluminosilicate particles, however, with different size distribution, 40 nm-2.5 mum for Rok and 10 nm-1 mum for Ice.
View Article and Find Full Text PDF