Since Otto Schmitt introduced the term "biomimetics" in 1957, the imitation of biological systems to develop separation methods and simulate biological processes has seen continuous growth, particularly over the past five decades. The biomimetic approach relies on the use of specific ligands-biospecific, biomimetic, or synthetic-which target biomolecules, such as proteins, antibodies, nucleic acids, enzymes, drugs, pesticides, and other bioactive analytes. This review highlights advances in biomimetic separations, focusing on biomimetic liquid chromatography (including immobilized artificial membrane chromatography, cell membrane chromatography, biomimetic affinity chromatography, weak affinity chromatography, micellar liquid chromatography, immobilized liposome chromatography, and liposome electrokinetic capillary chromatography) for the complex separation and purification of biomolecules and other important chemical compounds.
View Article and Find Full Text PDFIn the present study, 88 structurally- diverse drugs were investigated by biopartitioning micellar chromatography (BMC) using Brij-35 as surfactant under different chromatographic conditions. It was found that temperature and presence of NaCl have only a minor effect in BMC retention. Correlation of BMC retention factors with octanol-water partitioning required the inclusion of fractions of ionized species as additional parameters, showing that there is a weaker effect of ionization in BMC environment.
View Article and Find Full Text PDFThe aim of the study was to investigate the immobilized artificial membrane (IAM) retention mechanism for a set of flavonoids and to evaluate the potential of IAM chromatography to model Caco-2 permeability. For this purpose, the retention behavior of 41 flavonoid analogs on two IAM stationary phases, IAM.PC.
View Article and Find Full Text PDF