Publications by authors named "Panagiotis Adamopoulos"

The human angiotensin converting enzyme 2 (ACE2) gene encodes a type I transmembrane protein, which is homologous to angiotensin I-converting enzyme (ACE) and belongs to the angiotensin-converting enzyme family of dipeptidyl carboxypeptidases. As highlighted by the COVID-19 pandemic, ACE2 is not only crucial for the renin-angiotensin-aldosterone system (RAAS), but also displays great affinity with the SARS-CoV-2 spike protein, representing the major receptor of the virus. Given the significance of ACE2 in COVID-19, especially among cancer patients, the present study aims to explore the transcriptional landscape of ACE2 in human cancer and non-cancerous cell lines through the design and implementation of a custom targeted long-read sequencing approach.

View Article and Find Full Text PDF

Introduction: Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer.

Areas Covered: This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment.

View Article and Find Full Text PDF

Introduction: Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins.

View Article and Find Full Text PDF

N6-methyladenosine (m6A), a prevalent mRNA modification, is dynamically regulated by methyltransferases, including METTL3 and METTL14. In the current study, we employed a custom hybrid-seq method to identify novel / transcripts, explore their protein-coding capacities and predict the putative role of the METTL isoforms. Demultiplexing of the hybrid-seq barcoded datasets unraveled the expression patterns of the newly identified mRNAs in major malignancies as well as in non-malignant cells, providing a deeper understanding of the methylation pathways.

View Article and Find Full Text PDF

Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis.

View Article and Find Full Text PDF

The human NTHL1 gene encodes a DNA glycosylase that plays a key role in the base excision repair (BER) pathway, repairing oxidative DNA damage and maintaining genome integrity. The physiological activity of NTHL1 is crucial in preventing genetic alterations that can lead to cancer. In this study, we employed an innovative targeted DNA sequencing (DNA-seq) methodology to explore the transcriptional landscape of the NTHL1 gene, revealing previously uncharacterized alternative splicing events and novel exons.

View Article and Find Full Text PDF

Despite the substantial progress in multiple myeloma (MM) therapy nowadays, treatment resistance and disease relapse remain major clinical hindrances. Herein, we have investigated tRNA-derived fragment (tRF) profiles in MM and precursor stages (smoldering MM/sMM; monoclonal gammopathy of undetermined significance/MGUS), aiming to unveil potential MM-related tRFs in ameliorating MM prognosis and risk stratification. Small RNA-seq was performed to profile tRFs in bone marrow CD138 plasma cells, revealing the significant deregulation of the mitochondrial internal tRF (mt-i-tRF) in MM versus sMM/MGUS.

View Article and Find Full Text PDF

Background: Phosphatase and tensin homolog, widely known as PTEN, is a major negative regulator of the PI3K/AKT/mTOR signaling pathway, involved in the regulation of a variety of important cellular processes, including cell proliferation, growth, survival, and metabolism. Since most of the molecules involved in this biological pathway have been described as key regulators in cancer, the study of the corresponding genes at several levels is crucial.

Objective: Although previous studies have elucidated the physiological role of PTEN under normal conditions and its involvement in carcinogenesis and cancer progression, the transcriptional profile of PTEN has been poorly investigated.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 started in Wuhan, China, and since then, different versions of the virus have been found around the world.
  • Scientists are using a method called wastewater-based epidemiology (WBE) to check for the virus in community sewage, which helps track how the virus spreads.
  • The study introduces a new technique called Spike-Seq that helps scientists find and measure specific parts of the virus's genes in wastewater, especially in Athens, Greece, showing that it can effectively identify major virus variants like Alpha, Delta, and Omicron.
View Article and Find Full Text PDF

Breast Cancer Gene 1 (BRCA1) is a tumour suppressor protein that modulates multiple biological processes including genomic stability and DNA damage repair. Although the main BRCA1 protein is well characterized, further proteomics studies have already identified additional BRCA1 isoforms with lower molecular weights. However, the accurate nucleotide sequence determination of their corresponding mRNAs is still a barrier, mainly due to the increased mRNA length of (~5.

View Article and Find Full Text PDF

Background: Despite significant advancements in multiple myeloma (MM) therapy, the highly heterogenous treatment response hinders reliable prognosis and tailored therapeutics. Herein, we have studied the clinical utility of miRNAs in ameliorating patients' management.

Methods: miRNA-seq was performed in bone marrow CD138+ plasma cells (PCs) of 24 MM and smoldering MM (sMM) patients to analyze miRNAs profile.

View Article and Find Full Text PDF

Over 10 symbiotic microorganisms are present in a healthy human body and are responsible for the synthesis of vital vitamins and amino acids, mediating cellular pathways and supporting immunity. However, the deregulation of microbial dynamics can provoke diverse human diseases such as diabetes, human cancers, cardiovascular diseases, and neurological disorders. The human gastrointestinal tract constitutes a hospitable environment in which a plethora of microbes, including diverse species of archaea, bacteria, fungi, and microeukaryotes as well as viruses, inhabit.

View Article and Find Full Text PDF

Although a plethora of DNA modifications have been extensively investigated in the last decade, recent breakthroughs in molecular biology, including high throughput sequencing techniques, have enabled the identification of post-transcriptional marks that decorate RNAs; hence, epitranscriptomics has arisen. This recent scientific field aims to decode the regulatory layer of the transcriptome and set the ground for the detection of modifications in ribose nucleotides. Until now, more than 170 RNA modifications have been reported in diverse types of RNA that contribute to various biological processes, such as RNA biogenesis, stability, and transcriptional and translational accuracy.

View Article and Find Full Text PDF

In October 2020, the chemistry Nobel Prize was awarded to Emmanuelle Charpentier and Jennifer A. Doudna for the discovery of a new promising genome-editing tool: the genetic scissors of CRISPR-Cas9. The identification of CRISPR arrays and the subsequent identification of genes, which together represent an adaptive immunological system that exists not only in bacteria but also in archaea, led to the development of diverse strategies used for precise DNA editing, providing new insights in basic research and in clinical practice.

View Article and Find Full Text PDF

Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology.

View Article and Find Full Text PDF

Wastewater analysis is the most attractive alternative way for the quantification and variant profiling of SARS-CoV-2. Infection dynamics can be monitored by RT-qPCR assays while NGS can provide evidence for the presence of existing or new emerging SARS-CoV-2 variants. Herein, apart from the infection dynamic in Attica since June 1st, 2021, the monitoring of 9 mutations of the omicron and 4 mutations of the delta SARS-CoV-2 variants, utilizing both novel Nested-Seq and RT-PCR, is reported and the substitution of the delta variant (B.

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MAPKs) represent a protein family firmly involved in many signaling cascades, regulating a vast spectrum of stimulated cellular processes. Studies have shown that alternatively spliced isoforms of MAPKs play a crucial role in determining the desired cell fate in response to specific stimulations. Although the implication of most MAPKs transcript variants in the MAPK signaling cascades has been clarified, the transcriptional profile of a pivotal member, MAPK1, has not been investigated for the existence of additional isoforms.

View Article and Find Full Text PDF

BCL2 antagonist/killer (BAK) is a multidomain pro-apoptotic effector protein, encoded by the human BAK1 gene, which has emerged as a key checkpoint in the apoptotic machinery. Disassembly of BAK's tertiary structure, such as the truncation of the α1 helix, leads to deregulation of the pro-apoptotic functions and reduction of the protein's stability, thus being implicated in human malignancies. Although many studies have already clarified the vital role of BAK in cellular mechanisms, its pre-mRNA maturation process under cancerous and physiological human cells is neglected.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the second most lethal cause of cancer-related deaths in Europe. Fragments of tRNA are conserved among vertebrates, characterized by pleiotropic regulatory functions and have been found to discriminate colorectal tumors from normal colorectal mucosa. In the current study, we investigated the prognostic utility of 5'-tiRNA-Pro levels in CRC.

View Article and Find Full Text PDF

Background: Technological advancements in the era of massive parallel sequencing have enabled the functional dissection of the human transcriptome. However, 5' ends of mRNAs are significantly underrepresented in these datasets, hindering the efficient analysis of the complex human transcriptome. The implementation of the template-switching mechanism at the reverse transcription stage along with 5' rapid amplification of cDNA ends (RACE) constitutes the most prominent and efficient strategy to specify the actual 5' ends of cDNAs.

View Article and Find Full Text PDF

Although next-generation sequencing (NGS) technology revolutionized sequencing, offering a tremendous sequencing capacity with groundbreaking depth and accuracy, it continues to demonstrate serious limitations. In the early 2010s, the introduction of a novel set of sequencing methodologies, presented by two platforms, Pacific Biosciences (PacBio) and Oxford Nanopore Sequencing (ONT), gave birth to third-generation sequencing (TGS). The innovative long-read technologies turn genome sequencing into an ease-of-handle procedure by greatly reducing the average time of library construction workflows and simplifying the process of de novo genome assembly due to the generation of long reads.

View Article and Find Full Text PDF

The complicity of human RAS proteins in cancer is a well-documented fact, both due to the mutational hyperactivation of these GTPases and the overexpression of the genes encoding these proteins. Thus, it can be easily assumed that the study of genes at the transcriptional and post-transcriptional level is of the utmost importance. Although previous research has shed some light on the basic mechanisms by which GTPases are involved in tumorigenesis, limited information is known regarding the transcriptional profile of the genes encoding these proteins.

View Article and Find Full Text PDF

Background: Despite significant advances in multiple myeloma (MM) therapy, disease relapse and treatment resistance remain major obstacles in clinical management. Herein, we have studied the clinical utility of miRNAs in improving patients' risk-stratification and prognosis.

Methods: miRNA-seq was performed in CD138+ plasma cells of MM, smoldering multiple myeloma (sMM) and monoclonal gammopathy of undetermined significance (MGUS) patients.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that higher RNA levels in wastewater predicted increases in COVID-19 hospitalizations and ICU admissions by 5 to 9 days earlier than clinical data.
  • * Analysis of wastewater also showed the alpha-variant was dominant during the third wave, highlighting the potential of combining clinical and environmental data for early COVID-19 detection and response modeling.
View Article and Find Full Text PDF