The composition and morphology of lipid-based nanoparticles can influence their overall behavior. Previously, we demonstrated that phase separation in liposomes composed of DSPC and a diacylglycerol lipid analogue (DOaG) drives the biodistribution towards a specific subset of endothelial cells in zebrafish embryos. In the absence of traditional targeting functionalities (, antibodies, ligands), this selectivity is mediated solely by the unique liposome morphology and composition, characterized by a DOaG-rich lipid droplet within the DSPC-rich phospholipid bilayer.
View Article and Find Full Text PDFCurr Opin Biotechnol
February 2024
Lipid nanoparticles (LNPs) have unlocked the potential of ribonucleic acid (RNA) therapeutics and vaccines. Production and large-scale manufacturing methods for RNA-LNPs have been established and rapidly accelerate. Despite this, basic research on LNPs is still required, due to their high assembly complexity and fairly new development, including research on lipid organization, transfection optimization, and in vivo behavior.
View Article and Find Full Text PDFThe membrane-protein interface on lipid-based nanoparticles influences their in vivo behavior. Better understanding may evolve current drug delivery methods toward effective targeted nanomedicine. Previously, the cell-selective accumulation of a liposome formulation in vivo is demonstrated, through the recognition of lipid phase-separation by triglyceride lipases.
View Article and Find Full Text PDFHeart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform.
View Article and Find Full Text PDFPlasma lipid transport and metabolism are essential to ensure correct cellular function throughout the body. Dynamically regulated in time and space, the well-characterized mechanisms underpinning plasma lipid transport and metabolism offers an enticing, but as yet underexplored, rationale to design synthetic lipid nanoparticles with inherent cell/tissue selectivity. Herein, a systemically administered liposome formulation, composed of just two lipids, that is capable of hijacking a triglyceride lipase-mediated lipid transport pathway resulting in liposome recognition and uptake within specific endothelial cell subsets is described.
View Article and Find Full Text PDFStress is omnipresent in our everyday lives. It is therefore critical to identify potential stress-buffering behaviors that can help to prevent the negative effects of acute stress in daily life. Massages, a form of social touch, are an effective buffer against both the endocrinological and sympathetic stress response in women.
View Article and Find Full Text PDFGlucocorticoids (GCs) are effective anti-inflammatory drugs, but their clinical use is limited by their side effects. Using liposomes to target GCs to inflammatory sites is a promising approach to improve their therapeutic ratio. We used zebrafish embryos to visualize the biodistribution of liposomes and to determine the anti-inflammatory and adverse effects of the GC prednisolone phosphate (PLP) encapsulated in these liposomes.
View Article and Find Full Text PDFMany drug delivery systems end up in the lysosome because they are built from covalent or kinetically inert supramolecular bonds. To reach other organelles, nanoparticles hence need to either be made from a kinetically labile interaction that allows re-assembly of the nanoparticles inside the cell following endocytic uptake, or, be taken up by a mechanism that short-circuits the classical endocytosis pathway. In this work, the intracellular fate of nanorods that self-assemble via the Pt…Pt interaction of cyclometalated platinum(II) compounds, is studied.
View Article and Find Full Text PDFSurface charge plays a fundamental role in determining the fate of a nanoparticle, and any encapsulated contents, in vivo. Herein, we describe, and visualise in real time, light-triggered switching of liposome surface charge, from neutral to cationic, in situ and in vivo (embryonic zebrafish). Prior to light activation, intravenously administered liposomes, composed of just two lipid reagents, freely circulate and successfully evade innate immune cells present in the fish.
View Article and Find Full Text PDFEnhanced passive diffusion is usually considered to be the primary cause of the enhanced cellular uptake of cyclometalated drugs because cyclometalation lowers the charge of a metal complex and increases its lipophilicity. However, in this work, monocationic cyclometalated palladium complexes and () were found to self-assemble, in aqueous solutions, into soluble supramolecular nanorods, while their tetrapyridyl bicationic analogue () dissolved as isolated molecules. These nanorods formed via metallophilic Pd···Pd interaction and π-π stacking and were stabilized in the cell medium by serum proteins, in the absence of which the nanorods precipitated.
View Article and Find Full Text PDFA simple di(thioamido)carbazole 1 serves as a potent multispecific transporter for various biologically relevant oxyanions, such as drugs, metabolites and model organic phosphate. The transport kinetics of a wide range of oxyanions can be easily quantified by a modified lucigenin assay in both large and giant unilamellar vesicles.
View Article and Find Full Text PDFFour new beta-orcinol metabolites, hypotrachynic acid (1), deoxystictic acid (2), cryptostictinolide (3) and 8'-methylconstictic acid (4) along with the metabolites 8'-methylstictic acid (5), 8'-methylmenegazziaic acid (6), stictic acid (7), 8'-ethylstictic acid (8) and atranorin (9), that have been previously described, were isolated for the first time from the tissue extracts of the lichen Hypotrachyna revoluta (Flörke) Hale. The structures of the new metabolites were elucidated on the basis of extensive spectroscopic analyses. Radical scavenging activity (RSA) of the metabolites isolated in adequate amounts, was evaluated using luminol chemiluminescence and comparison with Trolox.
View Article and Find Full Text PDF