Objective: Chronic HBV/HDV infections are a major cause of liver cancer. Current treatments can only rarely eliminate HBV and HDV. Our previously developed preS1-HDAg immunotherapy could induce neutralising antibodies to HBV in vivo and raise HBV/HDV-specific T-cells.
View Article and Find Full Text PDFCellular immunotherapies based on T cell receptor (TCR) transfer are promising approaches for the treatment of cancer and chronic viral infections. The discovery of novel receptors is expanding considerably; however, the clinical development of TCR-T cell therapies still lags. Here we provide a pipeline for process development and clinical-scale manufacturing of TCR-T cells in academia.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is one of the deadliest cancer types worldwide. HCC is often diagnosed at a late stage when the therapeutic options are very limited. However, even at the earlier stages, the best treatment is liver transplantation, surgical resection or ablation.
View Article and Find Full Text PDFBackground: Chronic hepatitis B and D virus (HBV/HDV) infections can cause cancer. Current HBV therapy using nucleoside analogues (NAs) is life-long and reduces but does not eliminate the risk of cancer. A hallmark of chronic hepatitis B is a dysfunctional HBV-specific T-cell response.
View Article and Find Full Text PDFIntroduction: Innate lymphoid cells (ILCs) can provide early cytokine help against a variety of pathogens in the lungs and gastrointestinal tract. Type 2 ILC (ILC2) are comparable to T helper 2 cells found in the adaptive immune system, which secrete cytokines such as interleukin 5 (IL-5) and IL-13 and have been found to play roles in host defense against helminth infections and in allergic responses. Recent studies have identified that programmed cell death protein 1 (PD-1) and peroxisome proliferator activated receptor-γ (PPAR-γ) are highly expressed by ILC2.
View Article and Find Full Text PDF