Objective: The first step in renal urine formation is ultrafiltration across the glomerular barrier. The change in its nanostructure has been associated with nephrotic syndromes. Effects of physiological and hemodynamic factor alterations associated with diabetic nephropathy (DN) on glomerular permselectivity are examined through a mathematical model employing low-Reynolds-number hydrodynamics and hindered transport theory.
View Article and Find Full Text PDFViewed in renal physiology as a refined filtration device, the glomerulus filters large volumes of blood plasma while keeping proteins within blood circulation. Effects of macromolecule size and macromolecule hydrodynamic interaction with the nanostructure of the cellular layers of the glomerular capillary wall on the glomerular size selectivity are investigated through a mathematical simulation based on an ultrastructural model. The epithelial slit, a planar arrangement of fibers connecting the epithelial podocytes, is represented as a row of parallel cylinders with nonuniform spacing between adjacent fibers.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2009
The sieving of macromolecules in ultrafiltration is affected by solute and pore charge, as well as size. A large, relatively rigid molecule such as a globular protein may be viewed as a particle in an electrolyte solution. Charge may influence both its equilibrium partition coefficient and its lag coefficient (G), which is the ratio of particle to fluid velocity.
View Article and Find Full Text PDF