Publications by authors named "Pan-Hsien Kuo"

Aberrant expression, dysfunction and particularly aggregation of a group of RNA-binding proteins, including TDP-43, FUS and RBM45, are associated with neurological disorders. These three disease-linked RNA-binding proteins all contain at least one RNA recognition motif (RRM). However, it is not clear if these RRMs contribute to their aggregation-prone character.

View Article and Find Full Text PDF

The RNA-binding protein TDP-43 forms intracellular inclusions in amyotrophic lateral sclerosis (ALS). While TDP-43 mutations have been identified in ALS patients, how these mutations are linked to ALS remains unclear. Here we examined the biophysical properties of six ALS-linked TDP-43 mutants and found that one of the mutants, D169G, had higher thermal stability than wild-type TDP-43 and that it was cleaved by caspase 3 more efficiently, producing increased levels of the C-terminal 35 kD fragments (TDP-35) in vitro and in neuroblastoma cells.

View Article and Find Full Text PDF

Proteinaceous inclusions are common hallmarks of many neurodegenerative diseases. TDP-43 proteinopathies, consisting of several neurodegenerative diseases, including frontotemporal lobar dementia (FTLD) and amyotrophic lateral sclerosis (ALS), are characterized by inclusion bodies formed by polyubiquitinated and hyperphosphorylated full-length and truncated TDP-43. The structural properties of TDP-43 aggregates and their relationship to pathogenesis are still ambiguous.

View Article and Find Full Text PDF

TDP-43 is an important pathological protein that aggregates in the diseased neuronal cells and is linked to various neurodegenerative disorders. In normal cells, TDP-43 is primarily an RNA-binding protein; however, how the dimeric TDP-43 binds RNA via its two RNA recognition motifs, RRM1 and RRM2, is not clear. Here we report the crystal structure of human TDP-43 RRM1 in complex with a single-stranded DNA showing that RRM1 binds the nucleic acid extensively not only by the conserved β-sheet residues but also by the loop residues.

View Article and Find Full Text PDF

TDP-43 is the major pathological protein identified in the cellular inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The pathogenic forms of TDP-43 are processed C-terminal fragments containing a truncated RNA-recognition motif (RRM2) and a glycine-rich region. Although extensive studies have focused on this protein, it remains unclear how the dimeric full-length TDP-43 is folded and assembled and how the processed C-terminal fragments are misfolded and aggregated.

View Article and Find Full Text PDF

Rrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3' processing of RNA during RNA turnover and surveillance. The Rrp46 homolog, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis in Caenorhabditis elegans. Here we report the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.

View Article and Find Full Text PDF

TDP-43 is a pathogenic protein: its normal function in binding to UG-rich RNA is related to cystic fibrosis, and inclusion of its C-terminal fragments in brain cells is directly linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here we report the 1.65 A crystal structure of the C-terminal RRM2 domain of TDP-43 in complex with a single-stranded DNA.

View Article and Find Full Text PDF