Publications by authors named "Pamella J Ford"

Herein, we report a novel series of highly potent and selective triazolothiadiazole c-Met inhibitors. Starting with molecule , we have applied structure-based drug design principles to identify the triazolothiadiazole ring system. We successfully replaced the metabolically unstable phenolic moiety with a quinoline group.

View Article and Find Full Text PDF

The synthesis of novel, selective, orally active 2,5-disubstituted 6H-pyrimido[1,6-b]pyridazin-6-one p38α inhibitors is described. Application of structural information from enzyme-ligand complexes guided the selection of screening compounds, leading to the identification of a novel class of p38α inhibitors containing a previously unreported bicyclic heterocycle core. Advancing the SAR of this series led to the eventual discovery of 5-(2,6-dichlorophenyl)-2-(2,4-difluorophenylthio)-6H-pyrimido[1,6-b]pyridazin-6-one (VX-745).

View Article and Find Full Text PDF

The Ras/Raf/MEK/ERK signal transduction, an oncogenic pathway implicated in a variety of human cancers, is a key target in anticancer drug design. A novel series of pyrimidylpyrrole ERK inhibitors has been identified. Discovery of a conformational change for lead compound 2, when bound to ERK2 relative to antitarget GSK3, enabled structure-guided selectivity optimization, which led to the discovery of 11e, a potent, selective, and orally bioavailable inhibitor of ERK.

View Article and Find Full Text PDF

The Ras/Raf/MEK/ERK signal transduction is a key oncogenic pathway implicated in a variety of human cancers. We have identified a novel series of pyrazolylpyrroles as inhibitors of ERK. Aided by the discovery of two distinct binding modes for the pyrazolylpyrrole scaffold, structure-guided optimization culminated in the discovery of 6p, a potent and selective inhibitor of ERK.

View Article and Find Full Text PDF

The enzyme inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo biosynthesis of guanine nucleotides. Inhibition of IMPDH leads to immunosuppression by decreasing guanine nucleotides that are required for the proliferation of lymphocytes. IMPDH activity is mediated by two highly conserved isoforms, type I and type II.

View Article and Find Full Text PDF