Particulate immunotherapy holds promise to vaccinate or treat a broad array of illnesses, including cancer, infectious diseases, and autoimmune disorders. The rate of antigen release from nano/microparticles (MPs) can impact both the type and quality of the immune response they elicit. The lysosomes of antigen-presenting cells are highly oxidizing.
View Article and Find Full Text PDFImmunotherapies have significantly improved cancer patient survival, but response rates are still limited. Thus, novel formulations are needed to expand the breadth of immunotherapies. Pathogen associated molecular patterns (PAMPs) can be used to stimulate an immune response, but several pathogen recognition receptors are located within the cell, making delivery challenging.
View Article and Find Full Text PDFOvarian cancer is commonly diagnosed only after it has metastasized to the abdominal cavity (stage III). While the current standard of care of intraperitoneal (IP) administration of cisplatin and paclitaxel (PTX) combination chemotherapy has benefit, patient 5-year survival rates are low and have not significantly improved in the past decade. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities.
View Article and Find Full Text PDFWhile highly active antiretroviral therapy (HAART) has significantly reduced mortality rates in patients with human immunodeficiency virus type 1 (HIV-1), its efficacy may be impeded by emergence of drug resistance caused by lack of patient adherence. A therapeutic strategy that requires infrequent drug administration as a result of sustained release of antiretroviral drugs would put less burden on the patient. Long-acting antiretroviral prodrugs for HIV therapy were synthesized through modification of the active drugs, emtricitabine (FTC) and elvitegravir (EVG), with docosahexaenoic acid (DHA) in one-step, one-pot, high-yielding reactions.
View Article and Find Full Text PDFInfluenza places a significant health and economic burden on society. Efficacy of seasonal influenza vaccines can be suboptimal due to poor matching between vaccine and circulating viral strains. An influenza vaccine that is broadly protective against multiple virus strains would significantly improve vaccine efficacy.
View Article and Find Full Text PDFCancer cells are able to avoid immune surveillance and exploit the immune system to grow and metastasize. With the development of nano- and micro-particles, there has been a growing number of immunotherapy delivery systems developed to elicit innate and adaptive immune responses to eradicate cancer cells. This can be accomplished by training resident immune cells to recognize and eliminate cells with tumor-associated antigens or by providing external stimuli to enhance tumor cell apoptosis in the immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFBiochem Pharmacol
December 2017
Off target toxicities is one of the hallmarks of conventional chemotherapy as only a tiny percentage of the injected dose actually reaches the tumor(s). Numerous strategies have been employed in attempts to achieve targeted therapeutic delivery to tumors. One strategy that has received immense attention has been the packaging of these chemotherapeutics into nanoparticles and relying on the enhanced permeation and retention (EPR) effect for targeting.
View Article and Find Full Text PDFOvarian cancer is particularly aggressive once it has metastasized to the abdominal cavity (stage III). Intraperitoneal (IP) as compared to intravenous (IV) administration of chemotherapy improves survival for stage III ovarian cancer, demonstrating that concentrating chemotherapy at tumor sites has therapeutic benefit; unfortunately, IP therapy also increases toxic side effects, thus preventing its completion in many patients. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities.
View Article and Find Full Text PDFCurrent water quality monitoring methods rely on growth-based measurements to detect fecal indicator bacteria, such as Escherichia coli and enterococci, and Staphylococcus aureus (S. aureus). These growth-based measurements, however, can take days to complete.
View Article and Find Full Text PDFPurpose: To demonstrate improved frequency selective fat suppression in MRI using a magnetic susceptibility matching foam by reducing B0 inhomogeneities induced within the body by air-tissue interfaces.
Materials And Methods: Flexible pyrolytic graphite (PG) composite foam was tailored to match the magnetic susceptibility of human tissue and was shaped to surround the cervical spine region. Field maps and frequency selective fat suppressed T1 -weighted FLASH images were acquired at 3 Tesla in both phantoms and six healthy necks.