Publications by authors named "Pamela Schleissner"

Bacterial ferredoxin(flavodoxin)-NADP reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from B.

View Article and Find Full Text PDF

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES).

View Article and Find Full Text PDF

The most effective tested optogenetic tools available for neuronal silencing are the light-gated anion channel proteins found in the cryptophyte alga Guillardia theta (GtACRs). Molecular mechanisms of GtACRs, including the photointermediates responsible for the open channel state, are of great interest for understanding their exceptional conductance. In this study, the photoreactions of GtACR1 and its D234N, A75E, and S97E mutants were investigated using multichannel time-resolved absorption spectroscopy.

View Article and Find Full Text PDF

Photosynthetic organisms have mastered the use of "soft" macromolecular assemblies for light absorption and concentration of electronic excitation energy. Nature's design centers on an optically inactive protein-based backbone that acts as a host matrix for an array of light-harvesting pigment molecules. The pigments are organized in space such that excited states can migrate between molecules, ultimately delivering the energy to the reaction center.

View Article and Find Full Text PDF