Publications by authors named "Pamela Schartau"

Background: To the best of our knowledge, there is no validated classification to assess intraoperative adverse events (iAEs) in ophthalmic surgery. ClassIntra is a newly developed classification for surgery- and anaesthesia-related iAEs that has been recently validated in various surgical disciplines, but not in ophthalmic surgery. We aim to assess the validity and practicability of ClassIntra in patients undergoing ophthalmic surgery.

View Article and Find Full Text PDF

There is controversy as to whether homologues from the peripheral subunit binding domain family of small proteins fold 'downhill' (that is, non-cooperatively, in the absence of free-energy barriers between conformations) and whether they modulate their size for biological function. Sadqi et al. claim that Naf-BBL--a naphthylalanine-labelled, truncated version of this domain--folds in this way, on the grounds that they recorded a wide spread of melting temperatures of individual atoms measured by proton nuclear magnetic resonance (NMR) during their thermal denaturation.

View Article and Find Full Text PDF

We have determined the solution structures, equilibrium properties and ultra-fast folding kinetics for three bacterial homologues of the peripheral subunit-binding domain (PSBD) family. The mesophilic homologue, BBL, was less stable than the thermophilic and hyper-thermophilic variants (E3BD and POB, respectively). The broad unfolding transitions of each PSBD, when probed by different techniques, were essentially superimposable, consistent with co-operative denaturation.

View Article and Find Full Text PDF

The NATs (arylamine N-acetyltransferases) are a well documented family of enzymes found in both prokaryotes and eukaryotes. NATs are responsible for the acetylation of a range of arylamine, arylhydrazine and hydrazine compounds. We present here an investigation into the catalytic triad of residues (Cys-His-Asp) and other structural features of NATs using a variety of methods, including site-directed mutagenesis, X-ray crystallography and bioinformatics analysis, in order to investigate whether each of the residues of the catalytic triad is essential for catalytic activity.

View Article and Find Full Text PDF

Classical protein folding invokes a cooperative transition between distinct thermodynamic states that are individually populated at equilibrium and separated by an energy barrier. It has been proposed, however, that the small protein, BBL, undergoes one-step downhill folding whereby it folds non-cooperatively to its native state without encountering an appreciable energy barrier. Only a single conformational ensemble is populated under given conditions, and so the denatured state ensemble progressively changes into the native structure.

View Article and Find Full Text PDF