Publications by authors named "Pamela R Cook"

Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists.

View Article and Find Full Text PDF

Accounting for continual evolution of deleterious L1 retrotransposon families, which can contain hundreds to thousands of members remains a major issue in mammalian biology. L1 activity generated upwards of 40% of some mammalian genomes, including humans where they remain active, causing genetic defects and rearrangements. L1 encodes a coiled coil-containing protein that is essential for retrotransposition, and the emergence of novel primate L1 families has been correlated with episodes of extensive amino acid substitutions in the coiled coil.

View Article and Find Full Text PDF

Background: The Long INterspersed Element-1 (L1, LINE-1) is the only autonomous mobile DNA element in humans and has generated as much as half of the genome. Due to increasing clinical interest in the roles of L1 in cancer, embryogenesis and neuronal development, it has become a priority to understand L1-host interactions and identify host factors required for its activity. Apropos to this, we recently reported that L1 retrotransposition in HeLa cells requires phosphorylation of the L1 protein ORF1p at motifs targeted by host cell proline-directed protein kinases (PDPKs), which include the family of mitogen-activated protein kinases (MAPKs).

View Article and Find Full Text PDF

L1 non-LTR retrotransposons are autonomously replicating genetic elements that profoundly affected their mammalian hosts having generated upwards of 40% or more of their genomes. Although deleterious, they remain active in most mammalian species, and thus the nature and consequences of the interaction between L1 and its host remain major issues for mammalian biology. We recently showed that L1 activity requires phosphorylation of one of its 2 encoded proteins, ORF1p, a nucleic acid chaperone and the major component of the L1RNP retrotransposition intermediate.

View Article and Find Full Text PDF

Detailed mechanistic understanding of L1 retrotransposition is sparse, particularly with respect to ORF1p, a coiled coil-mediated homotrimeric nucleic acid chaperone that can form tightly packed oligomers on nucleic acids. Although the coiled coil motif is highly conserved, it is uniquely susceptible to evolutionary change. Here we studied three ORF1 proteins: a modern human one (111p), its resuscitated primate ancestor (555p) and a mosaic modern protein (151p) wherein 9 of the 30 coiled coil substitutions retain their ancestral state.

View Article and Find Full Text PDF

Although members of the L1 (LINE-1) clade of non-LTR retrotransposons can be deleterious, the L1 clade has remained active in most mammals for ∼100 million years and generated almost 40% of the human genome. The details of L1-host interaction are largely unknown, however. Here we report that L1 activity requires phosphorylation of the protein encoded by the L1 ORF1 (ORF1p).

View Article and Find Full Text PDF

The complex retrovirus human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. Deregulation of cellular transcription is thought to be an important step for T-cell transformation caused by viral infection. HTLV-1 basic leucine zipper factor (HBZ) is one of the viral proteins believed to be involved in this process, as it deregulates the expression of numerous cellular genes.

View Article and Find Full Text PDF