Background: Fleas and ticks serve as vectors of multiple pathogens in the genera and cause diseases in humans and other animals. Although human rickettsiosis and bartonellosis have been reported in all countries in Central America, limited research has been conducted to investigate the natural cycles of flea- and tick-borne rickettsiosis and bartonellosis, especially in Guatemala.
Methods: We evaluated dog parasites as sentinels for zoonotic disease risk in rural Guatemala by sampling ticks and fleas from dogs, which were then identified and individually screened for and .
Bacterial growth and behavior have been studied in microgravity in the past, but little focus has been directed to cell size despite its impact on a myriad of processes, including biofilm formation, which is impactful regarding crew health. To interrogate this characteristic, supernatant aliquots of cultured on different materials and media on board the International Space Station (ISS) as part of the Space Biofilms Project were analyzed. For that experiment, was grown in microgravity-with matching Earth controls-in modified artificial urine medium (mAUMg-high Pi) or LB Lennox supplemented with KNO, and its formation of biofilms on six different materials was assessed.
View Article and Find Full Text PDFCommunity engagement strategies provide tools for sustainable vector-borne disease control. A previous cluster randomized control trial engaged nine intervention communities in seven participatory activities to promote management of the domestic and peri-domestic environment to reduce risk factors for vector-borne Chagas disease. This study aims to assess the adoption of this innovative community-based strategy, which included chickens' management, indoor cleaning practices, and domestic rodent infestation control, using concepts from the Diffusion of Innovations Theory.
View Article and Find Full Text PDFDespite successes on the Sustainable Development Goals for access to improved water sources and sanitation, many low and middle-income countries (LMICs) continue to struggle with high rates of diarrheal disease. In Guatemala, 98% of water sources are estimated to have E. coli contamination.
View Article and Find Full Text PDFRNA interference has been a heavily utilized tool for reverse genetic analysis for two decades. In adult mosquitoes, double-stranded RNA (dsRNA) administration has been accomplished primarily via injection, which requires significant time and is not suitable for field applications. To overcome these limitations, here we present a more efficient method for robust activation of RNAi by oral delivery of dsRNA to adult Anopheles gambiae.
View Article and Find Full Text PDFRNA interference (RNAi) is a powerful mechanism that can be exploited not only for physiology research but also for designing insect pest management approaches. Some insects cause harm by vectoring diseases dangerous to humans, livestock, or plants or by damaging crops. For at least a decade now, different insect control strategies that induce RNAi by delivering double stranded RNA (dsRNA) targeting essential genes have been proposed.
View Article and Find Full Text PDFBackground: Mosquito-borne diseases affect millions worldwide, with malaria alone killing over 400 thousand people per year and affecting hundreds of millions. To date, the best strategy to prevent the disease remains insecticide-based mosquito control. However, insecticide resistance as well as economic and social factors reduce the effectiveness of the current methodologies.
View Article and Find Full Text PDFIntroduction: Chagas disease, a neglected tropical disease that affects millions of Latin Americans, has been effectively controlled in Guatemala after multiple rounds of indoor residual insecticide spraying (IRS). However, a few foci remain with persistent Triatoma dimidiata infestation. One such area is the municipality of Comapa, Department of Jutiapa, in the southeastern region of Guatemala, where control interventions appear less effective.
View Article and Find Full Text PDFChagas disease is a neglected tropical disease that continues to affect populations living in extreme poverty in Latin America. After successful vector control programs, congenital transmission remains as a challenge to disease elimination. We used the PRECEDE-PROCEED planning model to develop strategies for neonatal screening of congenital Chagas disease in rural communities of Guatemala.
View Article and Find Full Text PDFParasites transmitted by insects must adapt to their vectors and reservoirs. Chagas disease, an American zoonosis caused by Trypanosoma cruzi, is transmitted by several species of triatomines. In Central America, Triatoma dimidiata is a widely dispersed vector found in sylvatic and domestic habitats, with distinct populations across the endemic region of Guatemala.
View Article and Find Full Text PDFTechnologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut.
View Article and Find Full Text PDFBackground: Integrated vector management strategies depend on local eco-bio-social conditions, community participation, political will and inter-sectorial partnership. Previously identified risk factors for persistent Triatoma dimidiata infestation include the presence of rodents and chickens, tiled roofs, dirt floors, partial wall plastering and dog density.
Methods: A community-based intervention was developed and implemented based on cyclical stakeholder and situational analyses.
Background: Chagas disease transmission by Triatoma dimidiata persists in Guatemala and elsewhere in Central America under undefined ecological, biological and social (eco-bio-social) conditions.
Methodology: Eco-bio-social risk factors associated with persistent domiciliary infestation were identified by a cross-sectional survey and qualitative participatory methods. Quantitative and qualitative data were generated regarding Trypanosoma cruzi reservoirs and triatomine hosts.
Background: Anopheles albimanus is a key malaria vector in the northern neotropics. Current vector control measures in the region are based on mass distributions of long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) with pyrethroids. Resistance to pyrethroid insecticides can be mediated by increased esterase and/or multi-function oxidase activity and/or mutations in the voltage-gated sodium channel gene.
View Article and Find Full Text PDFBackground: Triatoma dimidiata is among the main vectors of Chagas disease in Latin America. However, and despite important advances, there is no consensus about the taxonomic status of phenotypically divergent T. dimidiata populations, which in most recent papers are regarded as subspecies.
View Article and Find Full Text PDFBackground: Trypanosoma cruzi, the agent of Chagas disease, is currently recognized as a complex of six lineages or Discrete Typing Units (DTU): TcI-TcVI. Recent studies have identified a divergent group within TcI - TcI(DOM). TcI(DOM).
View Article and Find Full Text PDFThe agent of Chagas disease, Trypanosoma cruzi, is phylogenetically divided into two lineages, T. cruzi I (TCI) and II (TCII). TCI is found in sylvatic and domestic habitats across South America.
View Article and Find Full Text PDF