Publications by authors named "Pamela Panetta"

A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery.

View Article and Find Full Text PDF

A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate.

View Article and Find Full Text PDF

Prenatal stress (PNS) might affect the developmental programming of adult chronic diseases such as metabolic and mood disorders. The molecular mechanisms underlying such regulations may rely upon long-term changes in stress-responsive effectors such as Brain-Derived Neurotrophic Factor (BDNF) that can affect neuronal plasticity underlying mood disorders and may also play a role in metabolic regulation. Based upon previous data, we hypothesized that PNS might lead to greater vulnerability to an obesogenic challenge experienced at adulthood.

View Article and Find Full Text PDF

Maternal diet during pregnancy can impact maternal behavior as well as the intrauterine environment, playing a critical role in programming offspring's physiology. In a preliminary study, we found a strong association between high-fat diet (HFD) during pregnancy and increased cannibalistic episodes and dams' mortality during late pregnancy and parturition. Based upon these data, we hypothesized that HFD during pregnancy could negatively affect neuroendocrine and metabolic regulations occurring during the final stages of pregnancy, thereby disrupting maternal behavior.

View Article and Find Full Text PDF

Prenatal stress (PNS) is a risk factor for the development of neuropsychiatric disorders. This study was aimed at assessing, in a rodent model, changes in gene expression profiles and behavioral output as a result of PNS, during periadolescence, a critical developmental period for the onset of psychopathology. Social behavior was studied in a standardized social interaction paradigm and the expression of Brain-Derived Neurotrophic Factor (Bdnf), a marker of neuronal plasticity, and of inhibitory and excitatory mechanisms (Na(+)-K(+)-2Cl(-) and K(+)-Cl(-) cotransporters ratio, NKCC1/KCC2) was analyzed.

View Article and Find Full Text PDF

Metabolic stressful challenges during susceptible time windows, such as fetal life, can have important implications for health throughout life. Deletion of the p66(Shc) gene in mice leads to reduced oxidative stress (OS), resulting in a healthy and lean phenotype characterized by increased metabolic rate, resistance to high-fat diet (HFD)-induced obesity and reduced emotionality at adulthood. Here we hypothesize that p66(Shc-/-) (KO) adult offspring might be protected from the detrimental effects induced by maternal HFD administered before and during pregnancy.

View Article and Find Full Text PDF