The engineering of the AAV-PHP capsids was an important development for CNS research and the modulation of gene expression in the brain. They cross the blood brain barrier and transduce brain cells after intravenous systemic delivery, a property dependent on the genotype of , the AAV-PHP capsid receptor. It is important to determine the transduction efficiency of a given viral preparation, as well as the comparative tropism for different brain cells; however, manual estimation of adeno-associated viral transduction efficiencies can be biased and time consuming.
View Article and Find Full Text PDFThe identification of the mutation causing Huntington's disease (HD) has led to the generation of a large number of mouse models. These models are used to further enhance our understanding of the mechanisms underlying the disease, as well as investigating and identifying therapeutic targets for this disorder. Here we review the transgenic, knock-in mice commonly used to model HD, as well those that have been generated to study specific disease mechanisms.
View Article and Find Full Text PDFThe heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited.
View Article and Find Full Text PDF