Publications by authors named "Pamela N Dyer"

PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive.

View Article and Find Full Text PDF

The nucleosome core particle (NCP), comprised of histone proteins wrapped with ∼146 base pairs of DNA, provides both protection and controlled access to DNA so as to regulate vital cellular processes. High-resolution structures of nucleosomes and nucleosome complexes have afforded a clear understanding of the structural role of NCPs, but a detailed description of the dynamical properties that facilitate DNA-templated processes is only beginning to emerge. Using methyl-TROSY NMR approaches we evaluate the effect of point mutations designed to perturb key histone interfaces that become destabilized during nucleosome remodeling in an effort to probe NCP plasticity.

View Article and Find Full Text PDF

Small basic proteins present in most Archaea share a common ancestor with the eukaryotic core histones. We report the crystal structure of an archaeal histone-DNA complex. DNA wraps around an extended polymer, formed by archaeal histone homodimers, in a quasi-continuous superhelix with the same geometry as DNA in the eukaryotic nucleosome.

View Article and Find Full Text PDF

FACT (facilitates chromatin transcription) is a histone chaperone that promotes chromatin recovery during transcription, with additional roles in cell differentiation. Although several models of the action of FACT during transcription have been proposed, they remain to be experimentally evaluated. Here we show that human FACT (hFACT) facilitates transcription through chromatin and promotes nucleosome recovery in vitro.

View Article and Find Full Text PDF

H2A.Bbd is an unusual histone variant whose sequence is only 48% conserved compared to major H2A. The major sequence differences are in the docking domain that tethers the H2A-H2B dimer to the (H3-H4)(2) tetramer; in addition, the C-terminal tail is absent in H2A.

View Article and Find Full Text PDF

Nucleosomes are highly dynamic macromolecular complexes that are assembled and disassembled in a modular fashion. One important way in which this dynamic process can be modulated is by the replacement of major histones with their variants, thereby affecting nucleosome structure and function. Here we use fluorescence resonance energy transfer between fluorophores attached to various defined locations within the nucleosome to dissect and compare the structural transitions of a H2A.

View Article and Find Full Text PDF

Here we describe 11 crystal structures of nucleosome core particles containing individual point mutations in the structured regions of histones H3 and H4. The mutated residues are located at the two protein-DNA interfaces flanking the nucleosomal dyad. Five of the mutations partially restore the in vivo effects of SWI/SNF inactivation in yeast.

View Article and Find Full Text PDF

The last five years have seen exciting advances in our understanding of the structure of the nucleosome core particle, the basic repeating unit in all eukaryotic chromatin. A picture emerges in which nucleosomal DNA, while distorted and compacted fivefold by tight interactions with the histone octamer core, is at the same time highly dynamic and adaptable. Here, we summarize the salient features from recent structural studies of nucleosome core particles (both published and unpublished) that concern the structure and dynamics of nucleosomal DNA, and the nature of protein-DNA interactions.

View Article and Find Full Text PDF