Publications by authors named "Pamela Meluh"

Proteomics studies have revealed that SUMOylation is a widely used post-translational modification (PTM) in eukaryotes. However, how SUMO E1/2/3 complexes use different SUMO isoforms and recognize substrates remains largely unknown. Using a human proteome microarray-based activity screen, we identified over 2500 proteins that undergo SUMO E3-dependent SUMOylation.

View Article and Find Full Text PDF

Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein.

View Article and Find Full Text PDF

The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components.

View Article and Find Full Text PDF

Comprehensive collections of open reading frame (ORF) deletion mutant strains exist for the budding yeast Saccharomyces cerevisiae. With great prescience, these strains were designed with short molecular bar codes or TAGs that uniquely mark each deletion allele, flanked by shared priming sequences. These features have enabled researchers to handle yeast mutant collections as complex pools of approximately 6000 strains.

View Article and Find Full Text PDF

Analysis of genetic interactions has been extensively exploited to study gene functions and to dissect pathway structures. One such genetic interaction is synthetic lethality, in which the combination of two non-lethal mutations leads to loss of organism viability. We have developed a dSLAM (heterozygote diploid-based synthetic lethality analysis with microarrays) technology that effectively studies synthetic lethality interactions on a genome-wide scale in the budding yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Background: Acetylation of histone H3 lysine 56 (K56Ac) occurs transiently in newly synthesized H3 during passage through S phase and is removed in G2. However, the physiologic roles and effectors of K56Ac turnover are unknown.

Results: The sirtuins Hst3p and, to a lesser extent, Hst4p maintain low levels of K56Ac outside of S phase.

View Article and Find Full Text PDF

Covalent histone post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitylation play pivotal roles in regulating many cellular processes, including transcription, response to DNA damage, and epigenetic control. Although positive-acting post-translational modifications have been studied in Saccharomyces cerevisiae, histone modifications that are associated with transcriptional repression have not been shown to occur in this yeast. Here, we provide evidence that histone sumoylation negatively regulates transcription in S.

View Article and Find Full Text PDF

The Saccharomyces genome-deletion project created >5900 'molecularly barcoded' yeast knockout mutants (YKO mutants). The YKO mutant collections have facilitated large-scale analyses of a multitude of mutant phenotypes. For example, both synthetic genetic array (SGA) and synthetic-lethality analysis by microarray (SLAM) methods have been used for synthetic-lethality screens.

View Article and Find Full Text PDF

Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation.

View Article and Find Full Text PDF

The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA.

View Article and Find Full Text PDF

During a screen to identify c-Jun activators, we isolated a cysteine protease, SuPr-1, that induced c-Jun-dependent transcription independently of c-Jun phosphorylation. SuPr-1 is a member of a new family of proteases that hydrolyze the ubiquitin-like modifier, SUMO-1. SuPr-1 hydrolyzed SUMO-1-modified forms of the promyelocytic leukemia gene product, PML, and altered the subcellular distribution of PML in nuclear PODs (PML oncogenic domains).

View Article and Find Full Text PDF

The centromere-kinetochore complex is a highly specialized chromatin domain that both mediates and monitors chromosome-spindle interactions responsible for accurate partitioning of sister chromatids to daughter cells. Centromeres are distinguished from adjacent chromatin by specific patterns of histone modification and the presence of a centromere-specific histone H3 variant (e.g.

View Article and Find Full Text PDF