Binding between cetyltrimethylammonium bromide, a cationic surfactant, and a variety of lengths of single stranded DNA was measured using fluorescence polarization and a simple cooperative model was used to obtain dissociation constants on the order of 1 × 10 for the aggregates that formed. Aggregation depended on strand length where strands much shorter than 40 nucleotides (for example strands of 24-nucleotides) were too short to form the same size aggregates. Other factors such as salt concentration and temperature also affected aggregate formation: increasing either the salt concentration or performing binding at the highest temperature studied (60 °C) made it more difficult for aggregates to form.
View Article and Find Full Text PDFIn utero exposure to the endocrine disrupting compound bisphenol A (BPA) is known to disrupt mammary gland development and increase tumor susceptibility in rodents. It is unclear whether different periods of in utero development might be more susceptible to BPA exposure. We exposed pregnant CD-1 mice to BPA at different times during gestation that correspond to specific milestones of in utero mammary gland development.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
June 2012
An understanding of the stability of nucleic acid folding is critical for applications involving RNA viruses, small molecule-RNA binding, and therapeutics, for example. To explore factors that affect this stability, hairpins made from oligonucleotides containing both a GAAA tetraloop and three to five complements in the stem have been used as models where locked nucleic acids (LNAs) have been substituted into the sequence. UV spectroscopy was used to obtain melting curves in 20% by volume formamide, and the enthalpies and entropies of melting were determined.
View Article and Find Full Text PDFLocked nucleic acids (LNAs) incorporated into either stable single stranded oligonucleotides containing tetraloops or their complements have been found to increase second order hybridization rate constants by an order of magnitude compared to the all-DNA hybridization rate constants. Model sequences composed of 20 bases in length that can form hairpins due to a stable GAAA tetraloop were used where LNAs were substituted for the nucleotides in the loop, stem, or end regions of the strand and in the complementary strand. Substitution of the LNAs to the loop predictably raised the melting temperatures of the duplex however, the hybridization rates between the tetraloop and the complementary sequence also increased.
View Article and Find Full Text PDFHybridization kinetics of DNA sequences with known secondary structures and random sequences designed with similar melting temperatures were studied in solution and when one strand was bound to 5 mum silica microspheres. The rates of hybridization followed second-order kinetics and were measured spectrophotometrically in solution and fluorometrically in the solid phase. In solution, the rate constants for the model sequences varied by almost two orders of magnitude, with a decrease in the rate constant with increasing amounts of secondary structure in the target sequence.
View Article and Find Full Text PDF