Miners are exposed to silica-bearing dust which can lead to silicosis, a potentially fatal lung disease. Currently, airborne silica is measured by collecting filter samples and sending them to a laboratory for analysis. Since this may take weeks, a field method is needed to inform decisions aimed at reducing exposures.
View Article and Find Full Text PDFMiners face a variety of respiratory hazards while on the job, including exposure to silica dust which can lead to silicosis, a potentially fatal lung disease. Currently, field-collected filter samples of silica are sent for laboratory analysis and the results take weeks to be reported. Since the mining workplace is constantly moving into new and often different geological strata with changing silica levels, more timely data on silica levels in mining workplaces could help reduce exposures.
View Article and Find Full Text PDFAn air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy.
View Article and Find Full Text PDFBecause toxicities may differ for Cr(VI) compounds of varying solubility, some countries and organizations have promulgated different occupational exposure limits (OELs) for soluble and insoluble hexavalent chromium (Cr(VI)) compounds, and analytical methods are needed to determine these species in workplace air samples. To address this need, international standard methods ASTM D6832 and ISO 16740 have been published that describe sequential extraction techniques for soluble and insoluble Cr(VI) in samples collected from occupational settings. However, no published performance data were previously available for these Cr(VI) sequential extraction procedures.
View Article and Find Full Text PDFJ Environ Monit
November 2007
Workers who perform routine welding tasks are potentially exposed to fume that may contain manganese. Manganese may cause respiratory problems and is implicated in causing the occurrence of Parkinson-like symptoms. In this study, a field colorimetric method for extracting and measuring manganese in welding fume was developed.
View Article and Find Full Text PDFSeveral occupational exposure limits and guidelines exist for silver, but the values for each depend on the chemical form of the silver compound in question. In the past, it generally was not possible, without prior knowledge of the work process, to distinguish soluble silver from insoluble silver compounds collected in workplace air samples. Therefore, analytical results were historically reported as total silver.
View Article and Find Full Text PDFAnn Occup Hyg
October 2005
A critical review of studies examining exposures to the various forms of silver was conducted to determine if some silver species are more toxic than others. The impetus behind conducting this review is that several occupational exposure limits and guidelines exist for silver, but the values for each depend on the form of silver as well as the individual agency making the recommendations. For instance, the American Conference of Governmental Industrial Hygienists has established separate threshold limit values for metallic silver (0.
View Article and Find Full Text PDFJ Occup Environ Hyg
September 2004
National Institute for Occupational Safety and Health method 7703 is a portable field procedure for the analysis of workplace air filter samples for hexavalent chromium (CrVI) content immediately after the samples are collected. The field method prescribes CrVI extraction from air filter samples with an ammonium sulfate/ammonium hydroxide extraction buffer using ultrasonic extraction (UE). Strong anion-exchange solid-phase extraction (SAE-SPE) is then used to separate CrVI from trivalent chromium and other interferences.
View Article and Find Full Text PDFTwo methods for measuring airborne lead using field-portable instruments have been developed by the National Institute for Occupational Safety and Health (NIOSH): Method 7702 uses X-ray fluorescence (XRF), and Method 7701 employs ultrasonic extraction (UE) followed by anodic stripping voltammetry (ASV). The two portable methods were evaluated at mining sites. Area air samples were collected throughout two mills where ore from nearby mines was processed; the primary constituent of the ore was lead sulfide (galena).
View Article and Find Full Text PDF