Publications by authors named "Pamela L Brito"

Continuous vaso-occlusive and inflammatory processes cause extensive end-organ damage in adults with sickle cell disease (SCD), and there is little evidence that longterm hydroxyurea therapy prevents this. In initial trials, P-selectin blockade with crizanlizumab reduced SCD vaso-occlusive crisis frequency, and interleukin (IL)-1β inhibition in SCD patients, using canakinumab, lowered inflammatory markers. We used murine SCD models to examine the effects of acute and chronic blockade of Pselectin and of IL-1β on vaso-occlusive events, their inflammatory profile and organ health.

View Article and Find Full Text PDF

Intravascular hemolysis (IVH) occurs in numerous inherited and acquired disorders, including sickle cell disease (SCD), malaria and sepsis. These diseases display unique symptoms, but often share complications, such as vasomotor dysfunction and pulmonary hypertension. Consequently, in vivo models are needed to study the effects of continuous intravascular hemolytic processes, independently of the molecular alteration or extrinsic factor that leads to erythrocyte destruction.

View Article and Find Full Text PDF

Haemoglobin S polymerization in the red blood cells (RBCs) of individuals with sickle cell anaemia (SCA) can cause RBC sickling and cellular alterations. Piezo1 is a mechanosensitive protein that modulates intracellular calcium (Ca ) influx, and its activation has been associated with increased RBC surface membrane phosphatidylserine (PS) exposure. Hypothesizing that Piezo1 activation, and ensuing Gárdos channel activity, alter sickle RBC properties, RBCs from patients with SCA were incubated with the Piezo1 agonist, Yoda1 (0.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) incurs vaso-occlusive episodes and organ damage, including nephropathy. Despite displaying characteristics of vascular dysfunction, SCD patients tend to present relatively lower systemic blood pressure (BP), via an unknown mechanism. We investigated associations between BP and renin-angiotensin-system (RAS) components in SCD and determined whether an inhibitor of angiotensin converting enzyme (ACE; often used to slow SCD glomerulopathy) further modulates BP and RAS components in a murine model of SCD.

View Article and Find Full Text PDF

Intravascular hemolysis, a major manifestation of sickle cell disease (SCD) and other diseases, incurs the release of hemoglobin and heme from red blood cells, in turn triggering inflammatory processes. This study investigated the in vitro effects of heme, a major inflammatory DAMP, on the adhesive properties of isolated human neutrophils. Heme (20 and 50 µM) significantly increased the adhesion of neutrophils to fibronectin and to recombinant ICAM-1, under static conditions, even more efficiently than the potent pro-inflammatory cytokine, tumor necrosis factor-α (TNF); a microfluidic assay confirmed that heme stimulated neutrophil adhesion under conditions of shear stress.

View Article and Find Full Text PDF