Diet-induced obesity is implicated in the development of a variety of neurodegenerative disorders. Concurrently, the loss of mitochondrial Complex I protein or function is emerging as a key phenotype across an array of neurodegenerative disorders. Therefore, the objective of this study was to determine if Western diet (WD) feeding in swine [carbohydrate = 40.
View Article and Find Full Text PDFSARS-COV-2, or COVID-19, is a respiratory virus that enters tissues via the angiotensin-converting enzyme 2 (ACE2) receptor and is primed and activated by transmembrane protease, serine 2 (TMPRSS2). An interesting dichotomy exists regarding the preventative/therapeutic effects of exercise on COVID-19 infection and severity. Although exercise training has been shown to increase ACE2 receptor levels (increasing susceptibility to COVID-19 infection), it also lowers cardiovascular risk factors, systemic inflammation, and preserves normal renin-angiotensin system axis equilibrium, which is considered to outweigh any enhanced risk of infection by decreasing disease severity.
View Article and Find Full Text PDFLimited reports exist regarding adeno-associated virus (AAV) biodistribution in swine. This study assessed biodistribution following antegrade intracoronary and intravenous delivery of two self-complementary serotype 9 AAV (AAV9sc) biologics designed to target signaling in the cardiomyocyte considered important for the development of heart failure. Under the control of a cardiomyocyte-specific promoter, AAV9sc.
View Article and Find Full Text PDFLeft ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by dystrophin deficiency. Vascular dysfunction has been suggested as an underlying pathogenic mechanism in DMD. However, this has not been thoroughly studied in a large animal model.
View Article and Find Full Text PDFHeart failure (HF) patients with deteriorating right ventricular (RV) structure and function have a nearly twofold increased risk of death compared with those without. Despite the well-established clinical risk, few studies have examined the molecular signature associated with this HF condition. The purpose of this study was to integrate morphological, molecular, and functional data with the transcriptome data set in the RV of a preclinical model of cardiometabolic HF.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2019
Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects.
View Article and Find Full Text PDFThe development of new treatments for heart failure lack animal models that encompass the increasingly heterogeneous disease profile of this patient population. This report provides evidence supporting the hypothesis that Western Diet-fed, aortic-banded Ossabaw swine display an integrated physiological, morphological, and genetic phenotype evocative of cardio-metabolic heart failure. This new preclinical animal model displays a distinctive constellation of findings that are conceivably useful to extending the understanding of how pre-existing cardio-metabolic syndrome can contribute to developing HF.
View Article and Find Full Text PDFKey Points: It has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. This report provides evidence supporting the hypothesis that increased shear stress exerts insulin-sensitizing effects in the vasculature and this evidence is based on experiments in vitro in endothelial cells, ex vivo in isolated arterioles and in vivo in humans. Given the recognition that vascular insulin signalling, and associated enhanced microvascular perfusion, contributes to glycaemic control and maintenance of vascular health, strategies that stimulate an increase in limb blood flow and shear stress have the potential to have profound metabolic and vascular benefits mediated by improvements in endothelial insulin sensitivity.
View Article and Find Full Text PDFConventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca-activated K (BK) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BK channel-mediated function.
View Article and Find Full Text PDFWe examined the effects of metformin, a commonly used antidiabetic drug, on gene expression in multiple arteries. Specifically, transcriptional profiles of feed arteries and second branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles as well as aortic endothelial scrapes were examined from obese insulin-resistant Otsuka Long-Evans Tokushima Fatty rats treated with ( n = 9) or without ( n = 10) metformin from 20 to 32 weeks of age. Metformin-treated rats exhibited a reduction in body weight, adiposity, and HbA1c ( P < 0.
View Article and Find Full Text PDFLow-intrinsic aerobic capacity is associated with increased risk for cardiovascular and metabolic diseases and is a strong predictor of early mortality. The effects of intrinsic aerobic capacity on the vascular response to insulin are largely unknown. We tested the hypothesis that rats selectively bred for a low capacity to run (LCR) exhibit vascular dysfunction and impaired vascular reactivity to insulin compared to high capacity running (HCR) rats.
View Article and Find Full Text PDFWe employed next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology to assess the effects of two different exercise training protocols on transcriptional profiles in diaphragm second-order arterioles (D2a) and in the diaphragm feed artery (DFA) from Otsuka Long Evans Tokushima Fatty (OLETF) rats. Arterioles were isolated from the diaphragm of OLETF rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). Our hypothesis was that exercise training would have similar effects on gene expression in the diaphragm and soleus muscle arterioles because diaphragm blood flow increases during exercise to a similar extent as in soleus.
View Article and Find Full Text PDFUsing next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries.
View Article and Find Full Text PDFThe left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model.
View Article and Find Full Text PDFWe used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.
View Article and Find Full Text PDFWe tested the hypothesis that a decrease in bioavailability of nitric oxide (NO) would result in increased adipose tissue (AT) inflammation. In particular, we utilized the obese Otsuka Long Evans Tokushima Fatty rat model (n = 20) and lean Long Evans Tokushima Otsuka counterparts (n = 20) to determine the extent to which chronic inhibition of NO synthase (NOS) with N (ω) -nitro-l-arginine methyl ester (L-NAME) treatment (for 4 weeks) upregulates expression of inflammatory genes and markers of immune cell infiltration in retroperitoneal white AT, subscapular brown AT, periaortic AT as well as in its contiguous aorta free of perivascular AT. As expected, relative to lean rats (% body fat = 13.
View Article and Find Full Text PDFAdipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk.
View Article and Find Full Text PDFWe employed next-generation RNA sequencing (RNA-Seq) technology to determine the influence of obesity on global gene expression in skeletal muscle feed arteries. Transcriptional profiles of the gastrocnemius and soleus muscle feed arteries (GFA and SFA, respectively) and aortic endothelial cell-enriched samples from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats were examined. Obesity produced 282 upregulated and 133 downregulated genes in SFA and 163 upregulated and 77 downregulated genes in GFA [false discovery rate (FDR) < 10%] with an overlap of 93 genes between the arteries.
View Article and Find Full Text PDFWe employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.
View Article and Find Full Text PDF