Publications by authors named "Pamela J Mansfield"

Background: Interleukin 18 (IL-18) is a novel mediator of angiogenesis in rheumatoid arthritis (RA).

Objective: To examine the role of IL-18 in RA angiogenesis and the signalling mechanisms involved.

Methods: Human dermal microvascular endothelial cell (HMVEC) chemotaxis, capillary morphogenesis assays and Matrigel plug angiogenesis assays were performed in vivo using IL-18 with or without signalling inhibitors.

View Article and Find Full Text PDF

Objective: Monocyte recruitment by proinflammatory cytokines is a hallmark of rheumatoid arthritis (RA). Lewis(y-6) and H (Le(y)/H) are blood group antigens up-regulated on RA synovial endothelium. We have previously shown that both soluble Le(y)/H and a glucose analog of H, H-2g, are angiogenic and mediateleukocyte-endothelial adhesion via induction of intercellular adhesion molecule 1.

View Article and Find Full Text PDF

Objective: Interleukin-18 (IL-18) is a proinflammatory cytokine implicated in the pathogenesis of rheumatoid arthritis (RA). This study was undertaken to examine the role of IL-18 in up-regulating secretion of the angiogenic factors stromal cell-derived factor 1alpha (SDF-1alpha)/CXCL12, monocyte chemoattractant protein 1 (MCP-1)/CCL2, and vascular endothelial growth factor (VEGF) in RA synovial tissue (ST) fibroblasts, and the underlying signaling mechanisms involved.

Methods: We used enzyme-linked immunosorbent assays, Western blotting, and chemical inhibitors/antisense oligodeoxynucleotides to signaling intermediates to assess the role of IL-18.

View Article and Find Full Text PDF

Cell adhesion molecules are critical in monocyte (MN) recruitment in immune-mediated and hematologic diseases. We investigated the novel role of recombinant human migration inhibitory factor (rhMIF) in up-regulating vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and their signaling pathways in human MNs. rhMIF-induced expression of VCAM-1 and ICAM-1 was significantly higher compared with nonstimulated MNs.

View Article and Find Full Text PDF

COS-1 cells bearing FcgammaRIIA were used as a model to demonstrate co-localization of several enzymes previously shown to regulate neutrophil phagocytosis. In COS-1 cells, phospholipase D (PLD) in the membrane fraction was activated during phagocytosis. PLD was found almost exclusively in lipid rafts, along with RhoA and ARF1.

View Article and Find Full Text PDF

Phospholipase D (PLD) regulates the polymorphonuclear leukocyte (PMN) functions of phagocytosis, degranulation, and oxidant production. Ceramide inhibition of PLD suppresses PMN function. In streptolysin O-permeabilized PMNs, PLD was directly activated by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) stimulation of adenosine diphosphate (ADP)-ribosylation factor (ARF) and Rho, stimulating release of lactoferrin from specific granules of permeabilized PMNs; PLD activation and degranulation were inhibited by C2-ceramide but not dihydro-C2-ceramide.

View Article and Find Full Text PDF

Fcgamma receptors are important mediators of the binding of IgG to and induction of phagocytosis in neutrophils. COS-1 cells provide a potentially useful model for studying these receptors because transfection with the FcgammaRIIA renders these cells phagocytic. During FcgammaRIIA-mediated phagocytosis in COS-1 cells, endogenous ceramide levels increased 52% by 20 min (p < 0.

View Article and Find Full Text PDF

Granulocyte colony-stimulating factor (GCSF) primes reduced neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in response to formyl peptide but does not increase oxidase activity when used alone. Both oxidase activity and degranulation require phospholipase D (PLD) activation, and exogenous C(2)-ceramide inhibits both functions through inhibition of PLD activity. We extended these observations to investigate neutrophil responses to GCSF.

View Article and Find Full Text PDF

Exogenous C(2)-ceramide has been shown to inhibit polymorphonuclear leukocyte (PMN) phagocytosis through inhibition of phospholipase D (PLD) and downstream events, including activation of extracellular signal-regulated kinases 1 and 2, leading to the hyphothesis that the sphingomyelinase pathway is involved in termination of phagocytosis. Here it is postulated that increased PLD activity generating phosphatidic acid and diacylglycerol (DAG) is essential for superoxide release and degranulation and that ceramide, previously shown to be generated during PMN activation, inhibits PLD activation, thereby leading to inhibition of PMN function. When PMNs were primed with granulocyte colony-stimulating factor (G-CSF) and then activated with N-formyl-methionyl-leucyl-phenylalanine (FMLP), C(2)-ceramide (10 microM) completely inhibited release of superoxide, lactoferrin, and gelatinase; the DAG analog sn-1,2-didecanoylglycerol (DiC10) (10 microM) restored oxidase activation and degranulation in the ceramide-treated cells.

View Article and Find Full Text PDF