Publications by authors named "Pamela Garl"

Oral mucositis, a severe oral ulceration, is a common toxic effect of radio- or chemoradio-therapy and a limiting factor to using the maximum dose of radiation for effective cancer treatment. Among cancer patients, at least 40% and up to 70%, of individuals treated with standard chemotherapy regimens or upper-body radiation, develop oral mucositis. To date, there is no FDA approved drug to treat oral mucositis in cancer patients.

View Article and Find Full Text PDF

Deregulation of transforming growth factor-beta (TGFbeta) signaling has been reported in human psoriasis. Our recent study using a keratin 5 promoter (K5.TGFbeta1(wt)) showed that transgenic mice expressing wild-type TGFbeta1 in the epidermis developed severe skin inflammation.

View Article and Find Full Text PDF

We previously showed that changes in vascular smooth muscle cell (SMC) PTEN/Akt signaling following vascular injury are associated with increased SMC proliferation and neointima formation. In this report, we used a genetic model to deplete PTEN specifically in SMCs by crossing PTEN(LoxP/LoxP) mice to mice expressing Cre recombinase under the control of the SM22alpha promoter. PTEN was downregulated with increases in phosphorylated Akt in major vessels, hearts, and lungs of mutant mice.

View Article and Find Full Text PDF

N-terminal protein acetylation, catalyzed by N-terminal acetyltransferases (NATs) recognizing distinct N-terminal sequences, is gaining recognition as an essential regulator of normal cell function, but little is known of its role in vertebrate development. We previously cloned a novel gene, embryonic growth-associated protein (EGAP), the expression of which is associated with rapid vascular smooth muscle cell proliferation during development. We show herein EGAP is the mammalian/zebrafish homologue of yeast Mak10p, one subunit of the yeast NatC complex, and describe the cloning of its binding partners Mak3 and Mak31.

View Article and Find Full Text PDF

Background: At distinct times during embryonic development and after vascular injury, smooth muscle cells (SMCs) exhibit a highly proliferative, serum-independent growth phenotype. The aim of the present study was to evaluate the functional role of S6 ribosomal protein (S6RP) and upstream positive and negative regulators in the control of SMC serum-independent growth.

Methods And Results: We previously reported increased expression of S6RP mRNA was associated with this unique growth phenotype.

View Article and Find Full Text PDF

We were interested in the elucidation of the interaction between the heparan sulfate proteoglycan, perlecan, and PTEN in the regulation of vascular smooth muscle cell (SMC) growth. We verified serum-stimulated DNA synthesis, and Akt and FAK phosphorylation were significantly reduced in SMCs overexpressing wild-type PTEN. Our previous studies showed perlecan is a potent inhibitor of serum-stimulated SMC growth.

View Article and Find Full Text PDF

We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated.

View Article and Find Full Text PDF

Stimulation of T47D cells with epidermal growth factor (EGF) results in the activation of the intrinsic tyrosine kinases of the receptor and the phosphorylation of multiple cellular proteins including the receptor, scaffold molecules such as c-Cbl, adapter molecules such as Shc, and the serine/threonine protein kinase Akt. We demonstrate that EGF stimulation of T47D cells results in the activation of the Src protein-tyrosine kinase and that the Src kinase inhibitor PP1 blocks the EGF-induced phosphorylation of c-Cbl but not the activation/phosphorylation of the EGF receptor itself. PP1 also blocks EGF-induced ubiquitination of the EGF receptor, which is presumably mediated by phosphorylated c-Cbl.

View Article and Find Full Text PDF