The mechanisms by which bone marrow stromal cells (BMSCs) maintain multilineage potency in vitro remain elusive. To identify the transcriptional regulatory circuits that contribute to BMSC multipotency, we performed paired single-nucleus multiomics of the expansion of freshly isolated BMSCs and of BMSCs undergoing tri-lineage differentiation. By computationally reconstructing the regulatory programs associated with initial stages of differentiation and early expansion, we identified the TEAD family of transcription factors, which is inhibited by Hippo signaling, as highly active in the BMSC in vitro multipotent state.
View Article and Find Full Text PDFFibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants of encoding for Gα and leading to excessive cyclic adenosine monophosphate signaling in bone-marrow stromal cells (BMSCs). The effect of Gα activation in the BMSC transcriptome and how it influences FD lesion microenvironment are unclear. We analyzed changes induced by Gα activation in the BMSC transcriptome and secretome.
View Article and Find Full Text PDFFibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants in , encoding for Gα, which leads to excessive cAMP signaling in bone marrow stromal cells (BMSCs). Despite advancements in our understanding of FD pathophysiology, the effect of Gα activation in the BMSC transcriptome remains unclear, as well as how this translates into their local influence in the lesional microenvironment. In this study, we analyzed changes induced by Gα activation in BMSC transcriptome and performed a comprehensive analysis of their production of cytokines and other secreted factors.
View Article and Find Full Text PDFOne of the most important properties of human embryonic stem cells (hESCs) is related to their primed and naïve pluripotent states. Our previous meta-analysis indicates the existence of heterogeneous pluripotent states derived from diverse naïve protocols. In this study, we have characterized a commercial medium (RSeT)-based pluripotent state under various growth conditions.
View Article and Find Full Text PDFChondrogenic induction of bone-marrow-derived stromal cells (BMSCs) is typically accomplished with medium supplemented with growth factors (GF) from the transforming growth factor-beta (TGF-β)/bone morphogenetic factor (BMP) superfamily. In a previous study, we demonstrated that brief (1-3 days) stimulation with TGF-β1 was sufficient to drive chondrogenesis and hypertrophy using small-diameter microtissues generated from 5000 BMSC each. This biology is obfuscated in typical large-diameter pellet cultures, which suffer radial heterogeneity.
View Article and Find Full Text PDFAdoptive transfer of cultured BMSCs was shown to be immune-suppressive in various inflammatory settings. Many factors play a role in the process, but no master regulator of BMSC-driven immunomodulation was identified. Consequently, an assay that might predict BMSC product efficacy is still unavailable.
View Article and Find Full Text PDFFor bone marrow stromal cells (BMSC) to be useful in cartilage repair their propensity for hypertrophic differentiation must be overcome. A single day of TGF-β1 stimulation activates intrinsic signaling cascades in BMSCs which subsequently drives both chondrogenic and hypertrophic differentiation. TGF-β1 stimulation upregulates , a transcription factor known to contribute to hypertrophic differentiation, and remains upregulated even if TGF-β1 is subsequently withdrawn from the chondrogenic induction medium.
View Article and Find Full Text PDFAlthough the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential.
View Article and Find Full Text PDFTechnologies on the development and differentiation of human induced pluripotent stem cells (hiPSCs) are rapidly improving, and have been applied to create cell types relevant to the bone field. Differentiation protocols to form bona fide bone-forming cells from iPSCs are available, and can be used to probe details of differentiation and function in depth. When applied to iPSCs bearing disease-causing mutations, the pathogenetic mechanisms of diseases of the skeleton can be elucidated, along with the development of novel therapeutics.
View Article and Find Full Text PDFMarie Ussing Nylen was a trail blazing scientist and administrative leader at the US National Institutes of Health. She accomplished this when it was extremely difficult for a woman to do so. She was also a whole person - a wife, mother, and talented athlete, that is, a well-rounded person by any definition.
View Article and Find Full Text PDFThe Gsα/cAMP signaling pathway mediates the effect of a variety of hormones and factors that regulate the homeostasis of the post-natal skeleton. Hence, the dysregulated activity of Gsα due to gain-of-function mutations (R201C/R201H) results in severe architectural and functional derangements of the entire bone/bone marrow organ. While the consequences of gain-of-function mutations of Gsα have been extensively investigated in osteoblasts and in bone marrow osteoprogenitor cells at various differentiation stages, their effect in adipogenically-committed bone marrow stromal cells has remained unaddressed.
View Article and Find Full Text PDFBased on studies over the last several decades, the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering. However, the markers for osteogenic precursors; i.e.
View Article and Find Full Text PDFThe autonomic nervous system is a master regulator of homeostatic processes and stress responses. Sympathetic noradrenergic nerve fibers decrease bone mass, but the role of cholinergic signaling in bone has remained largely unknown. Here, we describe that early postnatally, a subset of sympathetic nerve fibers undergoes an interleukin-6 (IL-6)-induced cholinergic switch upon contacting the bone.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) cascades are upregulated during bone marrow-derived stromal cell (BMSC) chondrogenesis, contributing to hypertrophy and preventing effective BMSC-mediated cartilage repair. Previous work demonstrated that a proprietary BMP inhibitor prevented BMSC hypertrophy, yielding stable cartilage tissue. Because of the significant therapeutic potential of a molecule capable of hypertrophy blockade, we evaluated the capacity of a commercially available BMP type I receptor inhibitor with similar properties, LDN 193189, to prevent BMSC hypertrophy.
View Article and Find Full Text PDFIn a previous transcriptomic study of human bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells"), SFRP2 was highly over-represented in a subset of multipotent BMSCs (skeletal stem cells, SSCs), which recreate a bone/marrow organ in an in vivo ectopic bone formation assay. SFRPs modulate WNT signaling, which is essential to maintain skeletal homeostasis, but the specific role of SFRP2 in BMSCs/SSCs is unclear. Here, we evaluated Sfrp2 deficiency on BMSC/SSC function in models of skeletal organogenesis and regeneration.
View Article and Find Full Text PDFIn this case report, we focus on Muenke syndrome (MS), a disease caused by the p.Pro250Arg variant in fibroblast growth factor receptor 3 (FGFR3) and characterized by uni- or bilateral coronal suture synostosis, macrocephaly without craniosynostosis, dysmorphic craniofacial features, and dental malocclusion. The clinical findings of MS are further complicated by variable expression of phenotypic traits and incomplete penetrance.
View Article and Find Full Text PDFBone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators.
View Article and Find Full Text PDFPersonalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient.
View Article and Find Full Text PDFVirtually all bone marrow-derived stromal cell (BMSC) chondrogenic induction cultures include greater than 2 weeks exposure to transforming growth factor-β (TGF-β), but fail to generate cartilage-like tissue suitable for joint repair. Herein we used a micro-pellet model (5 × 10 BMSC each) to determine the duration of TGF-β1 exposure required to initiate differentiation machinery, and to characterize the role of intrinsic programming. We found that a single day of TGF-β1 exposure was sufficient to trigger BMSC chondrogenic differentiation and tissue formation, similar to 21 days of TGF-β1 exposure.
View Article and Find Full Text PDFPopulations of bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells") contain a subset of cells that are able to recapitulate the formation of a bone/marrow organ (skeletal stem cells, SSCs). It is now apparent that cells with similar but not identical properties can be isolated from other skeletal compartments (growth plate, periosteum). The biological properties of BMSCs, and these related stem/progenitor cells, are assessed by a variety of assays, both in vitro and in vivo.
View Article and Find Full Text PDFThis report describes activity in Europe for the years 2016 and 2017 in the area of cellular and tissue-engineered therapies, excluding hematopoietic stem cell treatments for the reconstitution of hematopoiesis. It is the eighth of its kind and is supported by five established scientific organizations. In 2016 and 2017, a combined 234 teams from 29 countries responded to the cellular and engineered tissue therapy survey; 227 teams reported treating 8236 patients in these 2 years.
View Article and Find Full Text PDFMuenke syndrome is the leading genetic cause of craniosynostosis and results in a variety of disabling clinical phenotypes. To model the disease and study the pathogenic mechanisms, a human induced pluripotent stem cell (hiPSC) line was generated from a patient diagnosed with Muenke syndrome. Successful reprogramming was validated by morphological features, karyotyping, loss of reprogramming factors, expression of pluripotency markers, mutation analysis and teratoma formation.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported.
View Article and Find Full Text PDF