Generally, epithelial cells must organize in three dimensions to form functional tissue sheets. Here we investigate one such sheet, the Drosophila embryonic epidermis, and the morphogenetic processes organizing cells within it. We report that epidermal morphogenesis requires the proper distribution of the apical polarity determinant aPKC.
View Article and Find Full Text PDFThe dynamic rearrangement of cell-cell contacts is required for the establishment of functional epithelial cell sheets. However, the signaling pathways and cellular mechanisms that initiate and maintain this polarity are not well understood. We show that loss of the Wnt signaling component GSK3 beta results in increased levels of aPKC and leads to defects in apical-basal polarity.
View Article and Find Full Text PDFTo generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP) signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue.
View Article and Find Full Text PDFMajor phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago.
View Article and Find Full Text PDFHow many genetic changes control the evolution of new traits in natural populations? Are the same genetic changes seen in cases of parallel evolution? Despite long-standing interest in these questions, they have been difficult to address, particularly in vertebrates. We have analyzed the genetic basis of natural variation in three different aspects of the skeletal armor of threespine sticklebacks (Gasterosteus aculeatus): the pattern, number, and size of the bony lateral plates. A few chromosomal regions can account for variation in all three aspects of the lateral plates, with one major locus contributing to most of the variation in lateral plate pattern and number.
View Article and Find Full Text PDF