MgGeO is important as an analog for the ultrahigh-pressure behavior of MgSiO, a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, ThP-type structure.
View Article and Find Full Text PDFAerial Gamma-Ray Surveys (GRS) are ideal for tracking anthropogenic gamma radiation releases and transport. The interpretation of a GRS can be complicated by natural gamma-ray sources such as atmospheric radon, cosmic rays, geologic materials, and even the survey equipment itself. Some of these complicating factors can be accounted for or corrected by calibration or mathematic techniques.
View Article and Find Full Text PDFAerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials by creating a high resolution background model.
View Article and Find Full Text PDFJ Environ Radioact
February 2017
Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, K, U, and Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made.
View Article and Find Full Text PDFThis study compares high resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (National Uranium Resource Evaluation) aerial gamma-ray survey.
View Article and Find Full Text PDF