Publications by authors named "Pamela Bhattacharya"

Climate change causes an unprecedented increase in glacial retreats. The melting ice exposes land for colonization and diversification of bacterial communities leading to soil development, changes in plant community composition, and ecosystem functioning. Although a few studies have focused on macro-level deglaciation impacts, little is known about such effects on the bacterial community succession.

View Article and Find Full Text PDF

Soil respiration (SR), a natural phenomenon, emits ten times more CO from land than anthropogenic sources. It is predicted that climate warming would increase SR in most ecosystems and give rise to positive feedback. However, there are uncertainties associated with this prediction primarily due to variability in the relationship of SR with its two significant drivers, soil temperature and moisture.

View Article and Find Full Text PDF

Alpine ecosystems in the Himalaya, despite low primary productivity, store considerable amount of organic carbon. However, these ecosystems are highly vulnerable to climate warming which may stimulate ecosystem carbon efflux leading to carbon-loss and positive feedback. We used open-top chambers to understand warming responses of ecosystem respiration (ER) and soil respiration (SR) in two types of alpine meadows viz.

View Article and Find Full Text PDF

Thermoanaerobacter thermohydrosulfuricus BSB-33 is a thermophilic gram positive obligate anaerobe isolated from a hot spring in West Bengal, India. Unlike other T. thermohydrosulfuricus strains, BSB-33 is able to anaerobically reduce Fe(III) and Cr(VI) optimally at 60 °C.

View Article and Find Full Text PDF

A bacterial strain, designated as TSB-6, was isolated from the sediments of a Tantloi (India) hot spring at 65 °C. The strain showed 98% 16S rRNA gene sequence similarity with Anoxybacillus kualawohkensis strain KW12 and was found to grow optimally at 37 °C. However, growing cells, cell suspensions, and cell-free extracts from 65 °C cultures showed higher Cr(VI) reduction activities when assayed at either 37 or 65 °C than those obtained from 37 °C cultures.

View Article and Find Full Text PDF