Exposure to toxic levels of fatty acids (lipotoxicity) leads to cell damage and death and is involved in the pathogenesis of the metabolic syndrome. Since the metabolic consequences of lipotoxicity are still poorly understood, we studied the bioenergetic effects of the saturated fatty acid palmitate, quantifying changes in mitochondrial morphology, real-time oxygen consumption, ATP production sources, and extracellular acidification in hepatoma cells. Surprisingly, glycolysis was enhanced by the presence of palmitate as soon as 1 h after stimulus, while oxygen consumption and oxidative phosphorylation were unchanged, despite overt mitochondrial fragmentation.
View Article and Find Full Text PDFSteatosis is the accumulation of neutral lipids in the cytoplasm. In the liver, it is associated with overeating and a sedentary lifestyle, but may also be a result of xenobiotic toxicity and genetics. Non-alcoholic fatty liver disease (NAFLD) defines an array of liver conditions varying from simple steatosis to inflammation and fibrosis.
View Article and Find Full Text PDFMicroglia are universal sensors of alterations in CNS physiology. These cells integrate complex molecular signals and undergo comprehensive phenotypical remodeling to adapt inflammatory responses. In the last years, single-cell analyses have revealed that microglia exhibit diverse phenotypes during development, growth and disease.
View Article and Find Full Text PDFMicroglial activation by oleate and palmitate differentially modulates brain inflammatory status. However, the metabolic reprogramming supporting these reactive phenotypes remains unknown. Employing real-time metabolic measurements and lipidomic analysis, we show that both fatty acids promote microglial oxidative metabolism, while lipopolysaccharide (LPS) enhances glycolytic rates.
View Article and Find Full Text PDFObesity-derived inflammation and metabolic dysfunction has been related to the activity of the inducible nitric oxide synthase (iNOS). To understand the interrelation between metabolism, obesity and NO., we evaluated the effects of obesity-induced NO.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
February 2018
High plasma levels of fatty acids occur in a variety of metabolic diseases. Cellular effects of fatty acid overload resulting in negative cellular responses (lipotoxicity) are often studied in vitro, in an attempt to understand mechanisms involved in these diseases. Fatty acids are poorly soluble, and thus usually studied when complexed to albumins such as bovine serum albumin (BSA).
View Article and Find Full Text PDFAging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes.
View Article and Find Full Text PDFHuman metabolic diseases can be mimicked in rodents by using dietary interventions such as high fat diets (HFD). Nonalcoholic fatty liver disease (NAFLD) develops as a result of HFD and the disease may progress in a manner involving increased production of oxidants. The main intracellular source of these oxidants are mitochondria, which are also responsible for lipid metabolism and thus widely recognized as important players in the pathology and progression of steatosis.
View Article and Find Full Text PDFEnhanced mitochondrial generation of oxidants, including hydrogen peroxide (H2O2), is related to a large number of pathological conditions, including diet-induced obesity and steatohepatosis. Indeed, we have previously shown that high fat diets increase the generation of H2O2 in liver mitochondria energized by activated fatty acids. Here, we further study fatty-acid induced H2O2 release in liver mitochondria, and determine the characteristics that regulate it.
View Article and Find Full Text PDFHigh fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD).
View Article and Find Full Text PDF