The responses of seaweed species to increased CO and lowered pH (Ocean Acidification: OA) depend on their carbon concentrating mechanisms (CCMs) and inorganic carbon (Ci) preferences. However, few studies have described these mechanisms in the early life stages of seaweeds or assessed the effects of OA and its interactions with other environmental drivers on their functionality and photophysiology. Our study evaluated the effects of pH, light (PAR), temperature, and their interactions on the Ci uptake strategies and photophysiology in the early stages of .
View Article and Find Full Text PDFObjective: To understand the experiences and vulnerabilities for cross-cultural nursing care for immigrant women during pregnancy and delivery.
Method: Exploratory, qualitative research, in the light of the Theory of Diversity and Universality of Cultural Care, in Foz do Iguaçu, Brazil, through interviews with eight postpartum woman and 18 nurses, between February and September 2022. The interpretation of meanings was adopted for analysis.
Seaweeds are important components of coastal benthic ecosystems along the Western Antarctic Peninsula (WAP), providing refuge, food, and habitat for numerous associated species. Despite their crucial role, the WAP is among the regions most affected by global climate change, potentially impacting the ecology and physiology of seaweeds. Elevated atmospheric CO concentrations have led to increased dissolved inorganic carbon (Ci) with consequent declines in oceanic pH and alterations in seawater carbonate chemistry, known as Ocean Acidification (OA).
View Article and Find Full Text PDFMacrocystis pyrifera is a major habitat forming kelp in coastal ecosystems of temperate regions of the northern and southern hemispheres. We investigated the seasonal occurrence of adult sporophytes, morphological characteristics, and reproductive phenology at two sites within a wave-protected harbour and two wave-exposed sites in southern New Zealand every 3-4 months between 2012 and 2013. Seasonality in reproduction was assessed via the number of sporophylls, the occurrence of sori on sporophylls, and non-sporophyllous laminae (fertile pneumatocyst-bearing blades and fertile apical scimitars), meiospore release, and germination.
View Article and Find Full Text PDFThe capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong).
View Article and Find Full Text PDFLocal and global changes associated with anthropogenic activities are impacting marine and terrestrial ecosystems. Macroalgae, especially habitat-forming species like kelp, play critical roles in temperate coastal ecosystems. However, their abundance and distribution patterns have been negatively affected by warming in many regions around the globe.
View Article and Find Full Text PDFOcean warming (OW), ocean acidification (OA) and their interaction with local drivers, e.g., copper pollution, may negatively affect macroalgae and their microscopic life stages.
View Article and Find Full Text PDFFinfish aquaculture is an activity that has experienced an explosive global development, but presents several environmental risks, such as high nitrogen outputs with potential eutrophication consequences. Therefore, the integration of seaweed aquaculture with the aim of decreasing nitrogen emissions associated with intensive salmon farming has been proposed as a bioremediation solution. Ecophysiological knowledge about seaweeds cultured close to farming cages is, however, still rudimentary.
View Article and Find Full Text PDFThe responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content.
View Article and Find Full Text PDFThe absorption of anthropogenic CO by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps.
View Article and Find Full Text PDFOcean acidification (OA), the ongoing decline in seawater pH, is predicted to have wide-ranging effects on marine organisms and ecosystems. For seaweeds, the pH at the thallus surface, within the diffusion boundary layer (DBL), is one of the factors controlling their response to OA. Surface pH is controlled by both the pH of the bulk seawater and by the seaweeds' metabolism: photosynthesis and respiration increase and decrease pH within the DBL (pH ), respectively.
View Article and Find Full Text PDFUnder ocean acidification (OA), the 200 % increase in CO2(aq) and the reduction of pH by 0.3-0.4 units are predicted to affect the carbon physiology and growth of macroalgae.
View Article and Find Full Text PDFCarbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated [Formula: see text] dehydration and alter the stable carbon isotope (δ (13)C) signatures toward more CO2 use to support higher growth rate. At pHT 9.
View Article and Find Full Text PDFMacrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3 (-) ) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3 (-) by the surface-bound enzyme carbonic anhydrase (CAext ). Here, we examined other putative HCO3 (-) uptake mechanisms in M.
View Article and Find Full Text PDF