Aberrant N-linked glycans promote the malignant potential of cells by enhancing the epithelial-to-mesenchymal transition and the invasive phenotype. To identify small molecule inhibitors of N-glycan biosynthesis, we developed a chemical screen based on the ability of the tetravalent plant lectin L-phytohemagglutinin (L-PHA) to bind and crosslink surface glycoproteins with beta1,6GlcNAc-branched complex type N-glycans and thereby induce agglutination and cell death. In this screen, Jurkat cells were treated with a library of off-patent chemicals (n = 1,280) to identify molecules that blocked L-PHA-induced death.
View Article and Find Full Text PDFGolgi beta1,6N-acetylglucosaminyltransferase V (Mgat5) produces beta1,6GlcNAc-branched complex N-glycans on cell surface glycoproteins that bind to galectins and promote surface residency of glycoproteins, including cytokine receptors. Carcinoma cells from polyomavirus middle T (PyMT) transgenic mice on a Mgat5-/- background have reduced surface levels of epidermal growth factor (EGF) and transforming growth factor-beta (TGF-beta) receptors and are less sensitive to acute stimulation by cytokines in vitro compared with PyMT Mgat5+/+ tumor cells but are nonetheless tumorigenic when injected into mice. Here, we report that PyMT Mgat5-/- cells are reduced in size, checkpoint impaired, and following serum withdrawal, fail to down-regulate glucose transport, protein synthesis, reactive oxygen species (ROS), and activation of Akt and extracellular signal-regulated kinase.
View Article and Find Full Text PDFGolgi beta1,6-N-acetylglucosaminyltransferase V (Mgat5) produces beta1,6GlcNAc-branched N-glycans on glycoproteins, which increases their affinity for galectins and opposes loss from the cell surface to constitutive endocytosis. Oncogenic transformation increases Mgat5 expression, increases beta1,6GlcNAc-branched N-glycans on epidermal growth factor and transforming growth factor-beta receptors, and enhances sensitivities to ligands, cell motility, and tumor metastasis. Here, we demonstrate that Mgat5(-/-) mouse embryonic fibroblasts (MEFs) display reduced sensitivity to anabolic cytokines and reduced glucose uptake and proliferation.
View Article and Find Full Text PDFPhosphatase and tensin homolog (Pten) phosphatase opposes intracellular phosphoinositide 3-kinase (PI3K)/Akt signaling and is a potent tumor suppressor, while Golgi beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is positively associated with cancer progression and metastasis. beta1,6GlcNAc-branched N-glycans on receptor glycoproteins promote their surface residency and sensitizes cells to growth factor signaling. Here we demonstrate that the Pten heterozygosity in mouse embryonic fibroblasts enhances cell adhesion-dependent PI3K/Akt signaling, cell spreading, and proliferation, while Pten/Mgat5 double mutant cells are normalized.
View Article and Find Full Text PDFThe EGF and TGF-beta families of cytokines are critical regulators of cell proliferation, morphogenesis, and tissue repair. The signaling pathways downstream of EGF and TGF-beta receptors also contribute to cancer growth and metastasis. Cytokine receptors are glycoproteins, and we have recently shown that GlcNAc-branching of N-glycans enhances their cell surface residency and contributes to the growth autonomy of cancer cells.
View Article and Find Full Text PDFThe transforming growth factor-beta (TGF-beta) family of cytokines regulates cell proliferation, morphogenesis, and specialized cell functions in metazoans. Herein, we screened a compound library for modifiers of TGF-beta signaling in NMuMG epithelial cells using a cell-based assay to measure Smad2/3 nuclear translocation. We identified five enhancers of TGF-beta signaling that share a core structure of diethyl 2-(anilinomethylene)malonate (DAM), and D(50) values of 1 to 4 micromol/L.
View Article and Find Full Text PDFOncogenic signaling stimulates the dynamic remodeling of actin microfilaments and substrate adhesions, essential for cell spreading and motility. Transformation is associated with increased expression of beta1,6GlcNAc-branched N-glycans, products of Golgi beta1,6-acetylglucosaminyltransferase V (Mgat5) and the favored ligand for galectins. Herein we report that fibronectin fibrillogenesis and fibronectin-dependent cell spreading are deficient in Mgat5(-/-) mammary epithelial tumor cells and inhibited in Mgat5(+/+) cells by blocking Golgi N-glycan processing with swainsonine or by competitive inhibition of galectin binding.
View Article and Find Full Text PDFWAVE2 is a member of the Wiskott-Aldrich syndrome protein family of cytoskeletal regulatory proteins shown to link Rac activation to actin remodeling via induction of Arp 2/3 activity. WAVE2 is thought to be regulated by its positioning in a macromolecular complex also containing the Abelson-(Abl) interactor-1 (Abi-1) adaptor, but the molecular basis and biologic relevance of WAVE2 inclusion in this complex are ill defined. Here we show that Abi-1 binding to WAVE2 is mediated by discrete motifs in the Abi-1 coiled-coil and WAVE2 WAVE-homology domains and increases markedly in conjunction with Abi-1-WAVE2 translocation and colocalization at the leading edge in B16F1 cells after fibronectin stimulation.
View Article and Find Full Text PDFThe Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis.
View Article and Find Full Text PDFTargeted gene mutations in mice that cause deficiencies in protein glycosylation have revealed functions for specific glycans structures in embryogenesis, immune cell regulation, fertility and cancer progression. UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (GlcNAc-TV or Mgat5) produces N-glycan intermediates that are elongated with poly N-acetyllactosamine to create ligands for the galectin family of mammalian lectins. We generated Mgat5-deficient mice by gene targeting methods in embryonic stem cells, and observed a complex phenotype in adult mice including susceptibility to autoimmune disease, reduced cancer progression and a behavioral defect.
View Article and Find Full Text PDF