Publications by authors named "Paluska S"

Background: Digestibility is a primary factor in determining the quality of dietary protein. Microbial protease supplementation may be a strategy for improving protein digestion and subsequent postprandial plasma amino acid availability.

Objectives: To assess the effect of co-ingesting a microbial protease mixture with pea protein on postprandial plasma amino acid concentrations.

View Article and Find Full Text PDF

Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females.

View Article and Find Full Text PDF

Background: Protein is most commonly consumed as whole foods as opposed to single nutrients. However, the food matrix regulation of the postprandial muscle protein synthetic response has received little attention.

Objectives: The purpose of this study was to assess the effects of eating salmon (SAL) and of ingesting the same nutrients as an isolated mixture of crystalline amino acids and fish oil (ISO) on the stimulation of postexercise myofibrillar protein synthesis (MPS) and whole-body leucine oxidation rates in healthy young adults.

View Article and Find Full Text PDF

The activation of the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, by anabolic stimuli (such as muscle contraction or essential amino acids) involves its translocation to the cell periphery. Leucine is generally considered the most anabolic of amino acids for its ability to independently modulate muscle protein synthesis. However, it is currently unknown if free leucine impacts region-specific mTORC1-mediated phosphorylation events and protein-protein interactions.

View Article and Find Full Text PDF

Resistance training combined with adequate protein intake supports skeletal muscle strength and hypertrophy. These adaptations are supported by the action of muscle stem cells (MuSCs), which are regulated, in part, by fibro-adipogenic progenitors (FAPs) and circulating factors delivered through capillaries. It is unclear if middle-aged males and females have similar adaptations to resistance training at the cellular level.

View Article and Find Full Text PDF

Although muscular strength has been linked to greater cognitive function across different cognitive domains, the mechanism(s) through which this occurs remain(s) poorly understood. Indeed, while an emerging body of literature suggests peripheral myokines released from muscular contractions may play a role in this relationship, additional research is needed to understand this link. Accordingly, this study sought to compare the influences of a particular myokine, Cathepsin B (CTSB), and muscular strength on hippocampal-dependent relational memory and cognitive control in 40 adults (age = 50.

View Article and Find Full Text PDF

β-Hydroxy-β-methylbutyrate (HMB), a leucine metabolite, can increase skeletal muscle size and function. However, HMB may be less effective at improving muscle function in people with insufficient Vitamin D3 (25-OH-D < 30 ng/mL) which is common in middle-aged and older adults. Therefore, we tested the hypothesis that combining HMB plus Vitamin D3 (HMB + D) supplementation would improve skeletal muscle size, composition, and function in middle-aged women.

View Article and Find Full Text PDF

Creatine (Cr) supplementation is a well-established strategy to enhance gains in strength, lean body mass, and power from a period of resistance training. However, the effectiveness of creatyl-L-leucine (CLL), a purported Cr amide, is unknown. Therefore, the purpose of this study was to assess the effects of CLL on muscle Cr content.

View Article and Find Full Text PDF

Satellite cells are required for muscle regeneration, remodeling, and repair through their activation, proliferation, and differentiation; however, how dietary factors regulate this process remains poorly understood. The L-type amino acid transporter 1 (LAT1) transports amino acids, such as leucine, into mature myofibers, which then stimulate protein synthesis and anabolic signaling. However, whether LAT1 is expressed on myoblasts and is involved in regulating myogenesis is unknown.

View Article and Find Full Text PDF

Skeletal muscle aging is a multidimensional pathology of atrophy, reduced strength, and oxidative damage. Although some molecular targets may mediate both hypertrophic and oxidative adaptations in muscle, their responsiveness in humans and relationship with functional outcomes like strength remain unclear. Promising therapeutic targets to combat muscle aging like apelin, vitamin D receptor (VDR), and spermine oxidase (SMOX) have been investigated in preclinical models but the adaptive response in humans is not well defined.

View Article and Find Full Text PDF

Objective: The goal of this investigation was to evaluate circulating and skeletal muscle inflammatory biomarkers between maintenance hemodialysis (MHD) and demographic-matched control subjects (CON) before and after ingestion of a protein-rich meal.

Design And Methods: CON (n = 8; 50 ± 2 years; 31 ± 1 kg/m) and MHD patients (n = 8; 56 ± 5 years; 32 ± 2 kg/m) underwent a basal blood draw and muscle biopsy and serial blood draws after the ingestion of a mixed meal on a nondialysis day. Plasma advanced glycation end products (AGEs) and markers of oxidation were assessed via liquid chromatography-tandem mass spectrometry before and after the meal (+240 min).

View Article and Find Full Text PDF

Leucine is regarded as an anabolic trigger for the mTORC1 pathway and the stimulation muscle protein synthesis rates. More recently, there has been an interest in underpinning the relevance of branched-chain amino acid (BCAA)-containing dipeptides and their intact absorption into circulation to regulate muscle anabolic responses. We investigated the effects of dileucine and leucine ingestion on postprandial muscle protein turnover.

View Article and Find Full Text PDF

Key Points: The ingestion of protein potentiates the stimulation of myofibrillar protein synthesis rates after an acute bout of resistance exercise. Protein supplementation (eating above the protein Recommended Dietary Allowance) during resistance training has been shown to maximize lean mass and strength gains in healthy young and older adults. Here, contractile, oxidative, and structural protein synthesis were assessed in skeletal muscle in response to a moderate or higher protein diet during the early adaptive phase of resistance training in middle-aged adults.

View Article and Find Full Text PDF

Protein intake above the recommended dietary allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ∼1.

View Article and Find Full Text PDF

Key Points: Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAK were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups.

View Article and Find Full Text PDF

The anabolic action of "fast" whey protein on the regulation of postprandial muscle protein synthesis has been established to be short-lived in healthy young adults. We assessed the time course of anabolic signaling activation and stimulation of myofibrillar protein synthesis rates (MPS) after ingestion of a food source that represents a more typical meal-induced pattern of aminoacidemia. Seven young men (age: 22 ± 1 y) underwent repeated blood and biopsy sampling during primed, continuous l-[-H]phenylalanine and l-[1-C]leucine tracer infusions and ingested 38 g of l-[1-C]phenylalanine- and l-[1-C]leucine-labeled milk protein concentrate.

View Article and Find Full Text PDF

Unlabelled: During a traditional set configuration of resistance exercise (TRD), characterized by a continuous completion of repetitions, a decrease in power output tends to occur throughout a set of repetitions. Inclusion of intraset rest, otherwise known as a cluster set configuration (CLU), counteracts this power decline. However, the effect of a CLU configuration on postexercise myofibrillar protein synthesis rates (MPS) and anabolic signaling has not been investigated.

View Article and Find Full Text PDF

Background: We have recently shown that a novel signalling kinase, inositol hexakisphosphate kinase 1 (IP6K1), is implicated in whole-body insulin resistance via its inhibitory action on Akt. Insulin and insulin like growth factor 1 (IGF-1) share many intracellular processes with both known to play a key role in glucose and protein metabolism in skeletal muscle.

Aims: We aimed to compare IGF/IP6K1/Akt signalling and the plasma proteomic signature in individuals with a range of BMIs after ingestion of lean meat.

View Article and Find Full Text PDF

Introduction: Skeletal muscle loss is common in patients with renal failure who receive maintenance hemodialysis (MHD) therapy. Regular ingestion of protein-rich meals are recommended to help offset muscle protein loss in MHD patients, but little is known about the anabolic potential of this strategy.

Methods: Eight MHD patients (age: 56 ± 5 years; body mass index [BMI]: 32 ± 2 kg/m) and 8 nonuremic control subjects (age: 50 ± 2 years: BMI: 31 ± 1 kg/m) received primed continuous L-[-H]phenylalanine and L-[1-C]leucine infusions with blood and muscle biopsy sampling on a nondialysis day.

View Article and Find Full Text PDF

We have recently demonstrated that whole egg ingestion induces a greater muscle protein synthetic (MPS) response when compared with isonitrogenous egg white ingestion after resistance exercise in young men. Our aim was to determine whether whole egg or egg white ingestion differentially influenced colocalization of key regulators of mechanistic target of rapamycin complex 1 (mTORC1) as means to explain our previously observed divergent postexercise MPS response. In crossover trials, 10 healthy resistance-trained men (21 ± 1 yr; 88 ± 3 kg; body fat: 16 ± 1%; means ± SE) completed lower body resistance exercise before ingesting whole eggs (18 g protein, 17 g fat) or egg whites (18 g protein, 0 g fat).

View Article and Find Full Text PDF

Key Points: Lifestyle modifications that include the regular performance of exercise are probably important for counteracting the negative consequences of obesity on postprandial myofibrillar protein synthetic responses to protein dense food ingestion. We show that the interactive effect of resistance exercise and feeding on the stimulation of myofibrillar protein synthesis rates is diminished with obesity compared to normal weight adults. The blunted myofibrillar protein synthetic response with resistance exercise in people with obesity may be underpinned by alterations in muscle anabolic signalling phosphorylation (p70S6K and 4E-BP1).

View Article and Find Full Text PDF

Translocation and colocalization of mechanistic target of rapamycin complex 1 (mTORC1) with regulatory proteins represents a critical step in translation initiation of protein synthesis in vitro. However, mechanistic insight into the control of postprandial skeletal muscle protein synthesis rates at rest and after an acute bout of endurance exercise in humans is lacking. In crossover trials, eight endurance-trained men received primed-continuous infusions of L-[ring- H ]phenylalanine and consumed a mixed-macronutrient meal (18 g protein, 60 g carbohydrates, 17 g fat) at rest (REST) and after 60 min of treadmill running at 70% VO (EX).

View Article and Find Full Text PDF

Protein in the diet is commonly ingested from whole foods that contain various macro- and micronutrients. However, the effect of consuming protein within its natural whole-food matrix on postprandial protein metabolism remains understudied in humans. We aimed to compare the whole-body and muscle protein metabolic responses after the consumption of whole eggs with egg whites during exercise recovery in young men.

View Article and Find Full Text PDF

Context: Excess fat mass may diminish the anabolic potency of protein-rich food ingestion to stimulate muscle protein subfractional synthetic responses. However, the impact of adiposity on mitochondrial protein synthesis (MPS) rates after protein-rich food ingestion has not been thoroughly examined in vivo in humans.

Objective: We compared basal and postprandial MPS and markers of muscle inflammation [toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88) protein content] in young adults with different body mass indices (BMIs).

View Article and Find Full Text PDF

Purpose: Endurance exercise increases indices of small intestinal damage and leucine oxidation, which may attenuate dietary amino acid appearance and postprandial leucine balance during postexercise recovery. Therefore, the purpose of this study was to examine the effect of an acute bout of endurance exercise on postprandial leucine kinetics and net leucine balance.

Methods: In a crossover design, seven trained young men (age = 25.

View Article and Find Full Text PDF