Publications by authors named "Paludan S"

Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed how human neural-like cells (neurospheroids) respond to VZV infection compared to Sendai virus (SeV), finding that SeV triggers a strong immune response while VZV appears to evade detection.
  • * The research indicates that VZV not only avoids activating the immune system but also disrupts cellular integrity and prompts stress response mechanisms in the long term.
View Article and Find Full Text PDF

The inhibition of heat shock protein 90 (HSP90), a molecular chaperone, has been proposed to be a potential novel treatment strategy for Coronavirus disease 2019 (COVID-19). In contrast to other studies, our data demonstrated that RGRN-305, a HSP90 inhibitor, exacerbated the cytopathic effect and did not reduce the viral shedding in VeroE6-hTMPRSS2 cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Likewise in a murine model of SARS-CoV-2, transgenic mice treated orally with RGRN-305 exhibited reduced survival by the end of the experiment (day 12) as 14% (1/7) survived compared to 63% (5/8) of those treated with drug-vehicle.

View Article and Find Full Text PDF

Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis.

View Article and Find Full Text PDF

RNA vaccines elicit protective immunity against SARS-CoV-2, but the use of mRNA as an antiviral immunotherapeutic is unexplored. Here, we investigate the activity of lipidoid nanoparticle (LNP)-formulated mRNA encoding human IFNλ1 (ETH47), which is a critical driver of innate immunity at mucosal surfaces protecting from viral infections. IFNλ1 mRNA administration promotes dose-dependent protein translation, induction of interferon-stimulated genes without relevant signs of unspecific immune stimulation, and dose-dependent inhibition of SARS-CoV-2 replication in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies two cases of herpes simplex virus 1 (HSV-1) encephalitis in children linked to rare genetic variants of the TMEFF1 gene, which plays a protective role in the brain.
  • TMEFF1 protein interacts with the HSV-1 receptor NECTIN-1, blocking the virus's ability to enter brain cells, but genetic deficiencies in TMEFF1 allow for easier viral entry and replication within neurons.
  • The research suggests that enhancing TMEFF1 levels or using type I interferon can restore resistance to HSV-1, indicating a potential therapeutic pathway for preventing HSV-1 encephalitis.
View Article and Find Full Text PDF
Article Synopsis
  • - The research identifies TMEFF1 as a critical factor that helps prevent the replication of the herpes simplex virus type 1 (HSV-1) in neurons, which are particularly vulnerable to damage from infection.
  • - Using CRISPR screening, the study found that TMEFF1 is specifically expressed in central nervous system neurons and works by blocking viral entry, thereby reducing neuronal death during HSV-1 infection.
  • - Experiments showed that mice lacking TMEFF1 were more susceptible to HSV-1 in the brain, highlighting its importance in combating viral infections in the central nervous system.
View Article and Find Full Text PDF

The complexity of systemic lupus erythematosus (SLE) arises from intricate genetic and environmental interactions, with STING playing a pivotal role. This study aims to comprehend the function of STING using the pristane-induced lupus (PIL) model in Sting missense mutant mice (Goldenticket or Sting), which contrasts with previous research using Sting knockout mice. Investigating two-month-old Sting mice over six months post-PIL induction, we observed a profound reduction in autoimmune markers, including antinuclear and anti-dsDNA antibodies, germinal center B cells, and plasma cells, compared to their wild-type counterparts.

View Article and Find Full Text PDF

Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity.

View Article and Find Full Text PDF

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions.

View Article and Find Full Text PDF

The cGAS-STING pathway plays a crucial role in anti-tumoral responses by activating inflammation and reprogramming the tumour microenvironment. Upon activation, STING traffics from the endoplasmic reticulum (ER) to Golgi, allowing signalling complex assembly and induction of interferon and inflammatory cytokines. Here we report that cGAMP stimulation leads to a transient decline in ER cholesterol levels, mediated by Sterol O-Acyltransferase 1-dependent cholesterol esterification.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory bowel diseases (IBD) cause long-lasting inflammation in the digestive system, and scientists are looking into how stress inside cells (called ER stress) affects this.
  • They found that when cells experience ER stress, the way they use certain nutrients changes, which might affect how severe IBD is and how well treatments work.
  • The researchers discovered that not having enough of a nutrient called serine can mess up a signaling system that helps cells fight infections, but giving antioxidants can help improve this issue.
View Article and Find Full Text PDF

DNA is a danger signal sensed by cGAS to engage signaling through STING to activate innate immune functions. The best-studied downstream responses to STING activation include expression of type I interferon and inflammatory genes, but STING also activates other pathways, including apoptosis. Here, we report that STING-dependent induction of apoptosis in macrophages occurs through the intrinsic mitochondrial pathway and is mediated via IRF3 but acts independently of gene transcription.

View Article and Find Full Text PDF

Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Varicella zoster virus (VZV) causes chickenpox and shingles, and can lead to severe complications like encephalitis and pneumonitis, particularly in vulnerable individuals.
  • A case study of a 3-year-old boy showed a complex progression of varicella with serious symptoms, leading to the suspicion of hemophagocytic lymphohistiocytosis (HLH), which was treated despite ongoing issues.
  • The patient had a rare genetic variant in the AMFR gene affecting immune response signaling, resulting in higher VZV replication and impaired immune function, highlighting the importance of the AMFR-STING pathway in fighting viral infections.
View Article and Find Full Text PDF

The mechanisms underlying susceptibility to recurrent herpes simplex virus type 2 (HSV-2) meningitis remain incompletely understood. In a patient experiencing multiple episodes of HSV-2 meningitis, we identified a monoallelic variant in the IKBKE gene, which encodes the IKKε kinase involved in induction of antiviral IFN genes. Patient cells displayed impaired induction of IFN-β1 (IFNB1) expression upon infection with HSV-2 or stimulation with double-stranded DNA (dsDNA) and failed to induce phosphorylation of STING, an activation marker of the DNA-sensing cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway.

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive brain tumor with a median survival of 15 months and has limited treatment options. Immunotherapy with checkpoint inhibitors has shown minimal efficacy in combating GBM, and large clinical trials have failed. New immunotherapy approaches and a deeper understanding of immune surveillance of GBM are needed to advance treatment options for this devastating disease.

View Article and Find Full Text PDF

The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family.

View Article and Find Full Text PDF
Article Synopsis
  • In this study, researchers tested a CRISPR gene therapy specifically targeting herpes simplex virus 1 (HSV-1) in three patients suffering from severe herpetic stromal keratitis (HSK) during corneal transplantation.
  • The trial was open-label and non-randomized, focusing on assessing the safety and efficacy of the treatment over an 18-month period.
  • Results showed no off-target effects from the CRISPR treatment and no detectable HSV-1 in the patients, suggesting that this approach may be a safe option for treating HSK.
View Article and Find Full Text PDF
Article Synopsis
  • - Neurotropic viruses like HSV-1 and HSV-2 can infect neurons, leading to cell death and potentially severe health issues if not managed.
  • - The study shows that HSV-2 infection triggers a specific cell death pathway in neuron-like and brain cells through gasdermin E (GSDME), following endoplasmic reticulum (ER) stress caused by IRE1α activation.
  • - This process involves the activation of caspases and leads to the release of inflammatory signals (alarmins) from dying neurons, which in turn stimulates an immune response in microglia.
View Article and Find Full Text PDF

Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway.

View Article and Find Full Text PDF

Critical COVID-19 is characterized by lack of early type I interferon-mediated host defense and subsequent hyper-inflammation in the lungs. Aberrant activation of macrophages and neutrophils has been reported to lead to excessive activation of innate immunological pathways. It has recently been suggested that the DNA-sensing cGAS-STING pathway drives pathology in the SARS-CoV-2-infected lungs, but mechanistic understanding from in vivo models is needed.

View Article and Find Full Text PDF