Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive.
View Article and Find Full Text PDF(1) Mesenchymal stem cells (MSCs) are a valuable cell model to study the bone pathology of Osteogenesis Imperfecta (OI), a rare genetic collagen-related disorder characterized by bone fragility and skeletal dysplasia. We aimed to generate a novel OI induced mesenchymal stem cell (iMSC) model from induced pluripotent stem cells (iPSCs) derived from human dermal fibroblasts. For the first time, OI iMSCs generation was based on an intermediate neural crest cell (iNCC) stage.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2023
Pathogenic variants in the LRP5, PLS3, or WNT1 genes can significantly affect bone mineral density, causing monogenic osteoporosis. Much remains to be discovered about the phenotype and medical care needs of these patients. The purpose of this study was to examine the use of medical care among Dutch individuals identified between 2014 and 2021 with a pathogenic or suspicious rare variant in LRP5, PLS3, or WNT1.
View Article and Find Full Text PDFIntroduction: Osteogenesis Imperfecta is a rare genetic connective tissue disorder, characterized by skeletal dysplasia and fragile bones. Currently only two mouse models have been reported for haploinsufficient (HI) mild Osteogenesis Imperfecta (OI); the (Mov13) and the mouse model. The Mov13 mice were created by random insertion of the Mouse Moloney leukemia virus in the first intron of the gene, preventing the initiation of transcription.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a heritable connective tissue disorder that causes bone fragility due to pathogenic variants in genes responsible for the synthesis of type I collagen. Efforts to classify the high clinical variability in OI led to the Sillence classification. However, this classification only partially takes into account extraskeletal manifestations and the high genetic variability.
View Article and Find Full Text PDFEpidermolysis bullosa (EB) is a group of rare genetic diseases that exhibit mechanical fragility of the skin. This condition will result in the occurrence of skin blisters, skin erosions, and skin ulcerations when the skin is subjected to trauma. In this case report, we present a case of EB and multiple skeletal deformities in a 21-year-old female.
View Article and Find Full Text PDFObjectives: The primary aim was to gain insight into the growth of the aortic root in children and young adults with Marfan syndrome (MFS). Furthermore, we aimed to identify a clinical profile of patients with MFS who require an aortic root replacement at a young age with specific interest in age, sex, height and fibrillin-1 () genotype.
Methods: Aortic root dimensions of 97 patients with MFS between 0 year and 20 years and 30 controls were serially assessed with echocardiography.
Osteogenesis Imperfecta (OI) is a complex disease caused by genetic alterations in production of collagen type I, and collagen-related proteins. Bone fragility is the most common patient issue, but extraskeletal complications also present an adverse factor in the quality of life and prognosis of patients with OI. However, still little is known about the morbidity and mortality of these patients.
View Article and Find Full Text PDFFibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disease, in which soft connective tissue is converted into heterotopic bone through an endochondral ossification process. Patients succumb early as they gradually become trapped in a second skeleton of heterotopic bone. Although the underlying genetic defect is long known, the inherent complexity of the disease has hindered the discovery of effective preventions and treatments.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
March 2022
Primary ciliary dyskinesia (PCD) is a heterogeneous disease, with impaired mucociliary clearance causing respiratory tract infections. A founding CCDC114 mutation has led to a relatively homogeneous and large Dutch PCD population in Volendam. Our aim was to describe their phenotype.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a syndromic disorder of bone fragility with high variation in its clinical presentation. Equally variable is molecular aetiology; recessive forms are caused by approximately 20 different genes, many of which are directly implicated in collagen type I biosynthesis. Biallelic variants in prolyl 3-hydroxylase 1 (P3H1) are known to cause severe OI by affecting the competence of the prolyl 3-hydroxylation—cartilage associated protein—peptidyl-prolyl cis-trans isomerase B (P3H1-CRTAP-CyPB) complex, which acts on the Pro986 residue of collagen type I α 1 (COL1A1) and Pro707 collagen type I α 2 (COL1A2) chains.
View Article and Find Full Text PDFFibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the gene was identified as the causative mutation of FOP in 2006.
View Article and Find Full Text PDFOsteogenesis Imperfecta (OI) comprises a heterogeneous group of patients who share bone fragility and deformities as the main characteristics, albeit with different degrees of severity. Phenotypic variation also exists in other connective tissue aspects of the disease, complicating disease classification and disease course prediction. Although collagen type I defects are long established as the primary cause of the bone pathology, we are still far from comprehending the complete mechanism.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families.
View Article and Find Full Text PDFIn the field of rare bone diseases in particular, a broad care team of specialists embedded in multidisciplinary clinical and research environment is essential to generate new therapeutic solutions and approaches to care. Collaboration among clinical and research departments within a University Medical Center is often difficult to establish, and may be hindered by competition and non-equivalent cooperation inherent in a hierarchical structure. Here we describe the "collaborative organizational model" of the Amsterdam Bone Center (ABC), which emerged from and benefited the rare bone disease team.
View Article and Find Full Text PDFUsing [F] Sodium Fuoride (NaF) Positron Emission Tomography (PET) it is not only possible to identify the ossifying potency of a flare-up, but also to identify an asymptomatic chronic stage of fibrodysplasia ossificans progressiva (FOP). The purpose of this study was to investigate the diagnostic role of a more widely available imaging modality, Magnetic Resonance Imaging (MRI), which is of special interest for studies in pediatric FOP patients. MRI and [F]NaF PET/CT images at time of inclusion and subsequent follow-up CT scans of 4 patients were analyzed retrospectively.
View Article and Find Full Text PDFMechanical stress determines bone mass and structure. It is not known whether mechanical loading affects expression of bone regulatory genes in a combined deficiency of estrogen and vitamin D. We studied the effect of mechanical loading on the messenger RNA (mRNA) expression of bone regulatory genes during vitamin D and/or estrogen deficiency.
View Article and Find Full Text PDFThe aims of this work are to isolate bacterial symbionts from nudibranchs and subsequently to determine anti-Methicillin resistant (MRSA), cytotoxicity and anti-Herpes simplex virus type 1 (HSV-1) activities of bio compounds. A total of 15 species of nudibranchs were collected from Karimunjawa and five species from Bali, respectively. A total of 245 bacteria isolates were obtained.
View Article and Find Full Text PDFAim Of The Study: Osteogenesis imperfecta and Ehlers Danlos syndrome are hereditary disorders caused primarily by defective collagen regulation. Osteogenesis imperfecta patients were divided to haploinsufficient and dominant negative depending on the effect of COL1A1 and COL1A2 mutations whereas Ehlers Danlos syndrome patients had a mutation in PLOD1. Although collagen abnormalities have been extensively studied in monolayer cultures, there are no reports about 3D in vitro models which may reflect more accurately the dynamic cell environment.
View Article and Find Full Text PDFMol Genet Genomic Med
October 2019
Background: Thoracic aortic aneurysms and dissections (TAAD) may have a heritable cause in up to 20% of cases. We aimed to investigate the pathogenic effect of a TGFBR1 mutation in relation to TAAD.
Methods: Co-segregation analysis was performed followed by functional investigations, including myogenic transdifferentiation.