Publications by authors named "Palomar J"

Ionic liquids (ILs) are promising alternative compounds that enable the development of technologies based on their unique properties as solvents or catalysts. These technologies require integrated product and process designs to select ILs with optimal process performances at an industrial scale to promote cost-effective and sustainable technologies. The digital era and multiscale research methodologies have changed the paradigm from experiment-oriented to hybrid experimental-computational developments guided by process engineering.

View Article and Find Full Text PDF

In recent years, the fight against climate change and the mitigation of the impact of fluorinated gases (F-gases) on the atmosphere is a global concern. Development of technologies that help to efficiently separate and recycle hydrofluorocarbons (HFCs) at the end of the refrigeration and air conditioning equipment life is a priority. The technological development is important to stimulate the F-gas capture, specifically difluoromethane (R-32) and 1,1,1,2-tetrafluoroethane (R-134a), due to their high global warming potential.

View Article and Find Full Text PDF

The environmental impact of fluorinated gases (F-gases) necessitates the development of green technologies to mitigate them. Fluorinated ionic liquids (FIL/ILs) emerged as an alternative absorbent due to their unique and exceptional properties. In this work, a COSMO-based/Aspen Plus methodology was used to evaluate the performance of FIL/ILs as absorbents in the process scale of two F-gases: 1,1,1,2-tetrafluoroethane (R-134a) and difluoromethane (R-32).

View Article and Find Full Text PDF

This work studies the effect of the cation and anion on the biodegradability and inhibition of imidazolium- and choline-based ionic liquids (ILs) using activated sludge. Six commercial ILs, formed by combination of 1-Butyl-3-methylimidazolium (Bmim) and N,N,N-trimethylethanolammonium (Choline) cations and chloride (Cl), acetate (Ac) and bis(trifluoromethanesulfonyl)imide (NTf) anions were evaluated, all representative counter-ions with markedly different toxicity and biodegradability. Inherent and fast biodegradability tests were used to evaluate both the microorganism inhibition and the IL biodegradability.

View Article and Find Full Text PDF

The removal of nitrogen oxides (NO) has been extensively studied due to their harmful effects to health and environment. In this work, encapsulated ionic liquids (ENILs) are used as catalysts for the NO oxidation at humid conditions and low temperatures. Hollow carbon capsules (C) were first synthesized to contain different amounts of 1-butyl-3-methylimidazolium nitrate IL ([bmim][NO]), responsible for the catalytic oxidation.

View Article and Find Full Text PDF

The aim of this work is to study, (i) the photostability of different imidazolium and pyridinium ionic liquids (ILs) in water under solar light; and (ii) the photocatalytic degradation of those ILs in water with TiO under solar light. The effects of the type of cation and anion as well as the length of the cationic chain of the imidazolium ILs have been analyzed. These imidazolium-based ILs show high solar stability, slightly decreasing as the length of the cationic chain increases.

View Article and Find Full Text PDF

The ecotoxicity and inhibition of 12 imidazolium ionic liquids (ILs) with alkyl chain from C4 to C10 and chloride (Cl), tetrafluoroborate (BF) and bis(trifluoromethanesulfonyl)imide (NTf) anions have been studied by means of respiration inhibition assays using activated sludge collected from a wastewater treatment plant. This test represents an alternative easy, economic and quick way to evaluate the true impact of ILs on activated sludge-based wastewater treatment. For comparison purposes, the EC values were also determined by the Microtox test (Vibrio fischeri).

View Article and Find Full Text PDF

The performance of an ionic liquid with an aprotic heterocyclic anion (AHA-IL), trihexyl(tetradecyl)phosphonium 2-cyanopyrrolide ([P][2-CNPyr]), for CO capture has been evaluated considering both the thermodynamics and the kinetics of the phenomena. Absorption gravimetric measurements of the gas-liquid equilibrium isotherms of CO-AHA-IL systems were carried out from 298 to 333 K and at pressures up to 15 bar, analyzing the role of both chemical and physical absorption phenomena in the overall CO solubility in the AHA-IL, as has been done previously. In addition, the kinetics of the CO chemical absorption process was evaluated by in situ Fourier transform infrared spectroscopy-attenuated total reflection, following the characteristic vibrational signals of the reactants and products over the reaction time.

View Article and Find Full Text PDF

Zwitterion ionic liquids (ZIs) are compounds in which both counterions are covalently tethered, conferring them with unique characteristics; however, most of their properties are still unknown, representing a bottleneck to exploit their practical applications. Herein, the molecular and fluid properties of ZIs and their mixtures were explored by means of quantum chemical analysis based on the density functional theory (DFT) and COSMO-RS method, and compared against homologous ionic liquids (ILs) to provide a comprehensive overview of the effect of the distinct structures on their physicochemical and thermodynamic behavior. Overall, ZIs were revealed as compounds with higher polarity and stronger hydrogen-bonding capacity, implying higher density, viscosity, melting point, and even lower volatility than structurally similar ILs.

View Article and Find Full Text PDF

Purpose: Caudal-related homeobox transcription factor 2 (CDX2) has recently been proposed as a prognostic factor for gastric carcinoma. However and to the best of our knowledge, no previous report has analyzed CDX2 expression in patients with gastric adenocarcinoma receiving neoadjuvant therapy (NAT).

Patients, Materials And Methods: This is a retrospective cohort study to analyze the potential role of CDX2 expression to predict response to NAT and prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the benefits of using encapsulated ionic liquid (ENIL) for carbon dioxide (CO2) capture, focusing on the material 1-butyl-3-methylimidazolium acetate ([bmim][acetate]) that contains 70% ionic liquid.
  • Experiments show that ENIL offers improved CO2 sorption rates due to a larger contact area, while still retaining the favorable thermodynamic properties of the neat ionic liquid.
  • Additionally, ENIL systems effectively address common issues with ionic liquids, such as slow absorption rates and challenges with solvent regeneration, making them a promising option for chemical absorption of CO2.
View Article and Find Full Text PDF

Dielectric continuum models are popular for modeling solvent effects in quantum chemical calculations. The polarizable continuum model (PCM) was originally published exploiting the exact dielectric boundary condition. This is nowadays called DPCM.

View Article and Find Full Text PDF

This work studies the binaries of 1-butyl-X-methylpyridinium tetrafluoroborate [bXmpy][BF4] (X = 2, 3, and 4) with four 1,ω-dichloroalkanes, ω = 1-4, using the results obtained for the mixing properties h(E) and v(E) at two temperatures. The three isomers of the ionic liquid (IL) are weakly miscible with the 1,ω-dichloroalkanes when ω ≥ 5 and moderately soluble for ω = 4. The v(E)s of all the binaries present contractive effects, v(E) < 0, which are more pronounced with increasing temperature; the variation in v(E) with ω is positive, although this changes after ω = 4 due to problems of immiscibility.

View Article and Find Full Text PDF

Objective: To compare the self-perceived health, use of health services and unmet need for health care (UNHC) among immigrants and native populations of Southeast Spain.

Materials And Methods: Cross-sectional study of two representative samples of 1150 immigrants, and 1303 native participants from the National Health Survey. A single database was created with specific weights for each sample, and prevalence ratios (PR) were estimated by multivariate regression.

View Article and Find Full Text PDF

Most ionic liquids (ILs) are either water soluble or present a non-negligible miscibility with water that may cause some harmful effects upon their release into the environment. Among other methods, adsorption of ILs onto activated carbon (AC) has shown to be an effective technique to remove these compounds from aqueous solutions. However, this method has proved to be viable only for hydrophobic ILs rather than for the hydrophilic that, being water soluble, have a larger tendency for contamination.

View Article and Find Full Text PDF

Mixtures of ionic liquids (ILs) and molecular amines have been suggested for CO2 capture applications. The basic idea is to replace water, which volatilizes in the amine regeneration step and increases the parasitic energy load, with a nonvolatile ionic liquid solvent. To fully understand the thermodynamics of these systems, here experimental excess enthalpies for binary mixtures of monoethanolamine (MEA) and two ILs: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [hmim][NTf2], and 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [OHemim][NTf2], were obtained by calorimetry, using a Setaram C80 calorimeter, over the whole range of compositions at 313.

View Article and Find Full Text PDF

The use of ionic liquid mixtures (IL-IL mixtures) is being investigated for fine solvent properties tuning of the IL-based systems. The scarce available studies, however, evidence a wide variety of mixing behaviors (from almost ideal to strongly nonideal), depending on both the structure of the IL components and the property considered. In fact, the adequate selection of the cations and anions involved in IL-IL mixtures may ensure the absence or presence of two immiscible liquid phases.

View Article and Find Full Text PDF

The applications and variety of ionic liquids (ILs) have increased during the last few years, and their use at a large scale will require their removal/recovery from wastewater streams. Adsorption on activated carbons (ACs) has been recently proposed for this aim and this work presents a systematic analysis of the influence of the IL chemical structures (cation side chain, head group, anion type and the presence of functional groups) on their adsorption onto commercial AC from water solution. Here, the adsorption of 21 new ILs, which include imidazolium-, pyridinium-, pyrrolidinium-, piperidinium-, phosphonium- and ammonium-based cations and different hydrophobic and hydrophilic anions, has been experimentally measured.

View Article and Find Full Text PDF

The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone.

View Article and Find Full Text PDF

The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs.

View Article and Find Full Text PDF

A thermogravimetric technique based on a magnetic suspension balance operating in dynamic mode was used to study the thermodynamics (in terms of solubility and Henry's law constants) and kinetics (i.e., diffusion coefficients) of CO2 in the ionic liquids [bmim][PF6], [bmim][NTf2], and [bmim][FAP] at temperatures of 298.

View Article and Find Full Text PDF

A systematic thermodynamic analysis has been carried out for selecting cations and anions to enhance the absorption of volatile organic compounds (VOCs) at low concentration in gaseous streams by ionic liquids (ILs), using COSMO-RS methodology. The predictability of computational procedure was validated by comparing experimental and COSMO-RS calculated Henry's law constant data over a sample of 125 gaseous solute-IL systems. For more than 2400 solute-IL mixtures evaluated, including 9 solutes and 270 ILs, it was found that the lower the activity coefficient at infinite dilution (γ(∞)) of solutes in the ILs, the more the exothermic excess enthalpy (H(E)) of the equimolar IL-solute mixtures.

View Article and Find Full Text PDF

Encapsulated ionic liquid (ENIL) material was developed, consisting of ionic liquid (IL) introduced into carbon submicrocapsules. ENILs contain >85% w/w of IL but discretized in submicroscopic encapsulated drops, drastically increasing the surface contact area with respect to the neat fluid. ENIL materials were here tested for gas separation processes, obtaining a drastic increase in mass transfer rate.

View Article and Find Full Text PDF

Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF(4)]. Solubility data (x(IL),T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, x(IL), with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures.

View Article and Find Full Text PDF