Chalcones (1,3-diphenylpropen-1-ones) are a class of flavonoids that have been shown a broad spectrum of biological activities with therapeutic potential. Naturally occurring chalcones or synthetic chalcone derivatives have been extensively investigated as anticancer compounds. Cancer is still among the leading causes of death globally, although cancer treatments have improved over the past decades.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is one of the most common hematological neoplasia causing death worldwide. The long-term overall survival is unsatisfactory due to many factors including older age, genetic heterogeneity and molecular characteristics comprising additional mutations, and resistance to chemotherapeutic drugs. The expression of ABCB1/P-glycoprotein, ABCC1/MRP1, ABCG2/BCRP and LRP transporter proteins is considered the major reason for multidrug resistance (MDR) in AML, however conflicting data have been reported.
View Article and Find Full Text PDFDetection of tumor necrosis factor-alpha (TNF-α) is usually performed in cell cultured medium or body fluids via measurement of its soluble extracellular form. However, depending on cellular condition, TNF-α might be transported through extracellular vesicles (EV) from donor cells to recipient cells. EV are small membrane-delimited structures (∼50 nm to 10 μm) that are spontaneously released from multiple cell types.
View Article and Find Full Text PDFBackground: Microparticles (MPs) or ectosomes are small enclosed fragments (from 0.2 to 2 μm in diameter) released from the cellular plasma membrane. Several oncogenic molecules have been identified inside MPs, including soluble proteins XIAP, survivin, metalloproteinases, CX3CL1, PYK2 and other microRNA-related proteins; membrane proteins EGFR, HER-2, integrins and efflux pumps; and messenger RNAs and microRNAs miR-21, miR-27a, let-7, miR-451, among others.
View Article and Find Full Text PDFMultidrug resistance (MDR) is considered a multifactorial event that favors cancer cells becoming resistant to several chemotherapeutic agents. Numerous mechanisms contribute to MDR, such as P-glycoprotein (Pgp/ABCB1) activity that promotes drug efflux, overexpression of inhibitors of apoptosis proteins (IAP) that contribute to evasion of apoptosis, and oncogenic pathway activation that favors cancer cell survival. MDR molecules have been identified in membrane microparticles (MP) and can be transferred to sensitive cancer cells.
View Article and Find Full Text PDFP-glycoprotein (Pgp) and XIAP co-expression has been discussed in the process of the acquisition of multidrug resistance (MDR) in cancer. Here, we evaluated XIAP and Pgp expression in chronic myeloid leukemia (CML) samples, showing a positive correlation between them. Furthermore, we evaluated the effects of imatinib in XIAP and Pgp expression using CML cell lines K562 (Pgp(-)) and K562-Lucena (Pgp(+)).
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a challenging neoplasm that despite therapeutic advances requires efforts to overcome the multidrug resistance (MDR) phenotype, the major cause of relapse. The pterocarpanquinone LQB-118 is a new compound that induces apoptosis in leukemia cells. The objective of this work was to analyze the role of LQB-118 in inhibiting the inhibitor of apoptosis proteins (IAPs), XIAP and survivin, as well as in modulating the subcellular localization of NFκB, in comparison with idarubicin.
View Article and Find Full Text PDFMultidrug resistance (MDR) is considered a multifactorial phenotype which prevents a successful clinical cancer treatment. This phenomenon is mainly associated with mechanisms that include drug extrusion by P-glycoprotein (Pgp) overexpression and resistance to apoptosis derived by members of the inhibitor of apoptosis proteins (IAPs), such as XIAP. Studies have proposed the use of compounds that are able to inhibit or modulate Pgp function, with no changes in the physiological expression of this protein.
View Article and Find Full Text PDF