Jellyfish venoms are of medical and biotechnological importance, with toxins displaying antimicrobial, analgesic and anti-tumor activities. Although proteolytic enzymes have also been described, detailed characterisation of these proteins is scant in Olindias spp. High throughput mass spectrometry profiling of cnidarian venoms has become increasingly popular since the first description of the proteomic profile of putative toxins isolated from nematocysts of the hydrozoan jellyfish Olindias sambaquiensis describing the presence of orthologous enzymes as presented in venoms of advanced species as snakes.
View Article and Find Full Text PDFSnake venom metalloproteinases (SVMPs) are zinc-dependent enzymes responsible for most symptoms of human envenoming. Like matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAM) proteins, SVMPs are synthesized as zymogens, and enzyme activation is regulated by hydrolysis of their prodomain, but the processing of SVMPs is still unclear. In this study, we attempted to identify the presence of prodomain in different compartments of snake venom glands as zymogens or in the free form to elucidate some mechanism involved in SVMP activation.
View Article and Find Full Text PDF