Publications by authors named "Paloma Moran"

Rising occurrence of extreme warming events are profoundly impacting ecosystems, altering their functioning and services with significant socio-economic consequences. Particularly susceptible to heatwaves are intertidal shellfish beds, located in estuarine areas already stressed by factors such as rainfall events, red tides, eutrophication, and pollution. In Galicia, Northwestern Spain, these beds support vital shellfisheries, featuring the native clam Ruditapes decussatus and the non-indigenous R.

View Article and Find Full Text PDF
What's my hamburger meat made of?

Biochem Mol Biol Educ

January 2023

Outreach activities give high school students an opportunity to better understand the techniques and strategies used by researchers. Here is an experience with high school students designed to familiarize them with genetic methodologies. Students have been challenged to discover whether restaurant beef burgers are made with female or male beef.

View Article and Find Full Text PDF

Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance.

View Article and Find Full Text PDF

Pollution and other anthropogenic effects have driven a decrease in Atlantic salmon () in the Iberian Peninsula. The restocking effort carried out in the 1980s, with salmon from northern latitudes with the aim of mitigating the decline of native populations, failed, probably due to the deficiency in adaptation of foreign salmon from northern Europe to the warm waters of the Iberian Peninsula. This result would imply that the Iberian populations of Atlantic salmon have experienced local adaptation in their past evolutionary history, as has been described for other populations of this species and other salmonids.

View Article and Find Full Text PDF

Introduction: Most living marine organisms have a biphasic life cycle dependent on metamorphosis and settlement. These critical life-history events mean that a developmentally competent larva undergoes a range of coordinated morphological and physiological changes that are in synchrony with the ecological transition from a pelagic to a benthonic lifestyle. Therefore, transition from a pelagic to a benthonic habitat requires multiple adaptations, however, the underlying mechanisms regulating this process still remains unclear.

View Article and Find Full Text PDF

Distance learning requires the combined use of techniques because it is more complicated to keep the students' attention. This exercise is designed to explain the inactivation of the x-chromosome in humans and is intended to complement the theoretical explanations. It is estimated that it lasts two hours and makes use of different web resources.

View Article and Find Full Text PDF

Background: A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear.

View Article and Find Full Text PDF

Parasite-mediated selection is one of the main drivers of genetic variation in natural populations. The persistence of long-term self-fertilization, however, challenges the notion that low genetic variation and inbreeding compromise the host's ability to respond to pathogens. DNA methylation represents a potential mechanism for generating additional adaptive variation under low genetic diversity.

View Article and Find Full Text PDF

Many rivers have been impacted by heavy metal pollution in the past but the long-term legacies on biodiversity are difficult to estimate. The River Ulla (NW Spain) was impacted by tailings from a copper mine during the 1970-1980s but absence of baseline values and lack of subsequent monitoring have prevented a full impact assessment. We used archived fish scales of Atlantic salmon to reconstruct levels of historical copper pollution and its effects on salmon fitness.

View Article and Find Full Text PDF

The chemical composition of fish scales has been reported to reflect the composition of the waters in which fish have been resident, therefore having the potential for the assessment of temporal trends in watershed water quality. Here we studied the historical (1983-2007) metal contamination in the Ulla river (NW Iberian Peninsula) watershed - impacted by a Cu mine that was in operation from 1973 until 1988 - by means of the analysis of major and trace elements in salmon scales. Results indicate the presence of a significant contamination for several metals (especially Cu, Au, Ag, Sb, Zn) during the 1980's.

View Article and Find Full Text PDF

Tandemly repeated DNAs usually constitute significant portions of eukaryotic genomes. In bivalves, however, repetitive DNAs are habitually not widespread. In our search for abundant repetitive DNAs in trough shells, we discovered a novel satellite DNA, SSUsat, which constitutes at least 1.

View Article and Find Full Text PDF

The common octopus, , is a good candidate for aquaculture but a sustainable production is still unviable due to an almost total mortality during the paralarvae stage. DNA methylation regulates gene expression in the eukaryotic genome, and has been shown to exhibit plasticity throughout life cycle, changing profiles from paralarvae to adult stages. This pattern of methylation could be sensitive to small alterations in nutritional and environmental conditions during the species early development, thus impacting on its health, growth and survival.

View Article and Find Full Text PDF

Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced.

View Article and Find Full Text PDF

Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroid hormone (Pth)4 in zebrafish that was secondarily lost in the eutherian mammals' lineage, including humans, and that is specifically expressed in neurons of the hypothalamus and appears to be a central neural regulator of bone development and mineral homeostasis.

View Article and Find Full Text PDF

Self-fertilization (selfing) favours reproductive success when mate availability is low, but renders populations more vulnerable to environmental change by reducing genetic variability. A mixed-breeding strategy (alternating selfing and outcrossing) may allow species to balance these needs, but requires a system for regulating sexual identity. We explored the role of DNA methylation as a regulatory system for sex-ratio modulation in the mixed-mating fish Kryptolebias marmoratus.

View Article and Find Full Text PDF

Background: Histone H3 gene clusters have been described as highly conserved chromosomal markers in invertebrates. Surprisingly, in bivalves remarkable interspecific differences were found among the eight mussels and between the two clams in which histone H3 gene clusters have already been located. Although the family Veneridae comprises 10 % of the species of marine bivalves, their chromosomes are poorly studied.

View Article and Find Full Text PDF

Lampreys represent one of the most ancient vertebrate lineages enclosing a special interest for genetic and epigenetic studies. The sea lamprey (Petromyzon marinus) is an anadromous species that experiences metamorphosis all the way up to the adult stage. Although representing a gradual process, metamorphosis in this species involves dramatic conversions with regard to physiological together with structural body changes preparing individuals for a marine and parasitic life; in consequence, multiple gene expression modifications are expected.

View Article and Find Full Text PDF

Background: SPARC/osteonectin is an evolutionarily conserved matricellular protein that modulates cell-matrix interaction and cell function. In all vertebrates, SPARC is dynamically expressed during embryogenesis. However, the precise function of SPARC and the regulatory elements required for its expression in particular during early embryogenesis are largely unknown.

View Article and Find Full Text PDF

Loss of genetic diversity is thought to lead to increased risk of extinction in endangered populations due to decreasing fitness of homozygous individuals. Here, we evaluated the presence of inbreeding depression in a long-lived seabird, the European shag (Phalacrocorax aristotelis), after a severe decline in population size by nearly 70%. During three reproductive seasons, 85 breeders were captured and genotyped at seven microsatellite loci.

View Article and Find Full Text PDF

This work explores both the chromatin loss and the differential genome methylation in the sea lamprey (Petromyzon marinus) from a molecular cytogenetic point of view. Fluorescent in situ hybridization experiments on meiotic bivalents and mitotic chromosomes corroborate the chromatin loss previously observed during the development of the sea lamprey and demonstrate that the elimination affects not only to Germ1 sequences but also to the rpt200 satellite DNA and most part of the major ribosomal DNA present on the germinal line. 5-Methylcytosine immunolocation revealed that the GC-rich heterochromatin is highly methylated in the germ line but significantly less in somatic chromosomes.

View Article and Find Full Text PDF

Background: Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M.

View Article and Find Full Text PDF

The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae.

View Article and Find Full Text PDF

DNA methylation is a common regulator of gene expression and development in mammalian and other vertebrate genomes. DNA methylation has been studied so far in a few bivalve mollusk species, finding a wide spectrum of levels. We focused our study in the common octopus, Octopus vulgaris, an important organism for neuroscience, physiology and ethology research as well as for human consumption.

View Article and Find Full Text PDF

Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules.

View Article and Find Full Text PDF

Fish growth is commonly used as a proxy for fitness but this is only valid if individual growth variation can be interpreted in relation to conspecifics' performance. Unfortunately, assessing individual variation in growth rates is problematic under natural conditions because subjects typically need to be marked, repeated measurements of body size are difficult to obtain in the field, and recaptures may be limited to a few time events which will generally vary among individuals. The analysis of consecutive growth rings (circuli) found on scales and other hard structures offers an alternative to mark and recapture for examining individual growth variation in fish and other aquatic vertebrates where growth rings can be visualized, but accounting for autocorrelations and seasonal growth stanzas has proved challenging.

View Article and Find Full Text PDF