Here, we report the preparation of a novel Janus nanoparticle with opposite Ir and mesoporous silica nanoparticles through a partial surface masking with toposelective modification method. This nanomaterial was employed to construct an enzyme-powered nanomachine with self-propulsion properties for on-command delivery. The cargo-loaded nanoparticle was provided with a pH-sensitive gate and unit control at the mesoporous face by first attaching boronic acid residues and further immobilization of glucose oxidase through reversible boronic acid esters with the carbohydrate residues of the glycoenzyme.
View Article and Find Full Text PDFHere, we describe the design of a novel particle-to-particle intercommunicated nanosystem for dual delivery, triggered by physical and chemical inputs. The nanosystem was composed of an Au-mesoporous silica Janus nanoparticle loaded with paracetamol, mechanized with light-sensitive supramolecular gates at the mesoporous face and functionalized on the metal surface with the enzyme acetylcholinesterase. The second component was a mesoporous silica nanoparticle loaded with rhodamine B and gated with thiol-sensitive ensembles.
View Article and Find Full Text PDFNovel Janus nanoparticles based on Au colloids anisotropically modified with polyamidoamine dendrons were prepared though a masking/toposelective modification approach. These nanomaterials were further functionalized with horseradish peroxidase on the dendritic face and provided on the opposite metal surface with a ssDNA aptamer for C-reactive protein (CRP). The resulting nanoparticles were employed as biorecognition/signaling elements to construct an amperometric aptasensor with sandwich-type architecture for the specific detection of this cardiac biomarker.
View Article and Find Full Text PDFHere we report a novel labeling strategy for electrochemical aptasensors based on enzymatic marking via supramolecular host-guest interactions. This approach relies on the use of an adamantane-modified target-responsive hairpin DNA aptamer as an affinity bioreceptor, and a neoglycoconjugate of β-cyclodextin (CD) covalently attached to a redox enzyme as a labeling element. As a proof of concept, an amperometric aptasensor for a carcinoembryonic antigen was assembled on screen-printed carbon electrodes modified with electrodeposited fern-like gold nanoparticles/graphene oxide and, by using a horseradish peroxidase-CD neoglycoenzyme as a biocatalytic redox label.
View Article and Find Full Text PDFThis work describes the assembly of a novel enzyme-controlled nanomachine operated through an AND Boolean logic gate for on-command delivery. The nanodevice was constructed on Au-mesoporous silica Janus nanoparticles capped with a thiol-sensitive gate-like molecular ensemble on the mesoporous face and functionalized with glutathione reductase on the gold face. This autonomous nanomachine employed NADPH and glutathione disulfide as input chemical signals, leading to the enzymatic production of reduced glutathione that causes the disruption of the gating mechanism on the mesoporous face and the consequent payload release as an output signal.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2021
Inspired by biological systems, the development of artificial nanoscale materials that communicate over a short distance is still at its early stages. This work shows a new example of a cooperating system with intercommunicated devices at the nanoscale. The system is based on the new sucrose-responsive Janus gold-mesoporous silica (Janus Au-MS) nanoparticles network with two enzyme-powered nanodevices.
View Article and Find Full Text PDFA novel nanomachine for dual and sequential delivery of two different compounds was developed by grafting a thiol group and a pH sensitive β-cyclodextrin-based gate-like ensemble on acetylcholinesterase-modified Au-mesoporous silica Janus nanoparticles.
View Article and Find Full Text PDFHere we describe the construction of an integrated and pH-sensitive nanomachine with layer-by-layer supramolecular design and enzymatic control for on-command delivery. The nanodevice comprises a first layer of β-cyclodextrin-coated gold nanoparticles as capping element of benzimidazole functionalized mesoporous silica nanoparticles, and a second control layer based on an adatamantane-modified glucose oxidase derivative. The nanomachine was selectively fuelled by glucose and successfully employed for the autonomous release of doxorubicin in HeLa cancer cells.
View Article and Find Full Text PDFWe report herein the assembly of an integrated nanodevice with bi-enzymatic cascade control for on-command cargo release. This nanocarrier is based on Au-mesoporous silica Janus nanoparticles capped at the mesoporous face with benzimidazole/β-cyclodextrin-glucose oxidase pH-sensitive gate-like ensembles and functionalized with invertase on the gold face. The rationale for this delivery mechanism is based on the invertase-mediated hydrolysis of sucrose yielding glucose, which is further transformed into gluconic acid by glucose oxidase causing the disruption of the pH-sensitive supramolecular gates at the Janus nanoparticles.
View Article and Find Full Text PDFIn the recent years, targeted cancer theranosis, the concomitant therapeutic treatment and selective visualization of cancerous tissue, has become a powerful strategy to improve patient prognosis. In this context, targeted multimodal molecular imaging, the combination of different imaging modalities overcoming their individual limitations, has attracted great attention. Due to their unique properties, advanced nanomaterials have taken center stage in the development of theranostics.
View Article and Find Full Text PDF'Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers.
View Article and Find Full Text PDFThis work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular β-cyclodextrin:benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate.
View Article and Find Full Text PDFAu nanoparticles modified with 4-mercaptopyridine and 6-mercapto-1-hexanol were used as coordination agents to prepare a novel hybrid nanomaterial with Ag:4,4'-bipyridine nanobelts. This nanohybrid was employed to modify glassy carbon electrodes and to construct a horseradish peroxidase-based mediatorless amperometric biosensor for H2O2. The electrode, poised at -100mV, exhibited a rapid response within 4s and a linear calibration range from 90pM to 6.
View Article and Find Full Text PDFA novel water-soluble graphene derivative was prepared from graphene oxide via a two-step modification approach. Graphene oxide was first functionalised with reactive epoxy groups by covalent modification with (3-glycidyloxypropyl)trimethoxysilane and further cross-linked with glycol chitosan. This graphene derivative was characterized using different microscopy and physicochemical methods and employed as a coating material for a glassy carbon electrode.
View Article and Find Full Text PDFWe report herein the design of a stimulus-programmed pulsatile delivery system for sequential cargo release based on the use of a lactose-modified esterase as a capping agent in phenylboronic acid functionalized mesoporous silica nanoparticles. The dual-release mechanism was based on the distinct stability of the cyclic boronic acid esters formed with lactose residues and the long naturally occurring glycosylation chains in the modified neoglycoenzyme. Cargo delivery in succession was achieved using glucose and ethyl butyrate as triggers.
View Article and Find Full Text PDFA novel strategy was employed to prepare a water-soluble graphene derivative by using dextran-based polymer brushes as solubilizing agents. Graphene oxide was grafted with (3-mercaptopropyl) trimethoxysilane and further decorated with Au nanoparticles. This hybrid nanomaterial was then reduced and anchored with polysaccharide-based polymer brushes by chemisorption of an end-group thiolated dextran derivative on the Au nanoparticles.
View Article and Find Full Text PDFChem Commun (Camb)
November 2014
A novel electrochemical assay to quantify transglutaminase activity is reported. The assay is based on the enzyme-controlled diffusion of Fe(CN)6(3-/4-) through amino-functionalized nanochannels of a mesoporous silica thin film on a Au surface in the presence of N-benzyloxycarbonyl-L-glutaminylglycine.
View Article and Find Full Text PDFWe report herein the design of a smart delivery system in which cargo delivery from capped mesoporous silica (MS) nanoparticles is controlled by an integrated enzyme-based "control unit". The system consists of Janus-type nanoparticles having opposing Au and MS faces, functionalized with a pH-responsive β-cyclodextrin-based supramolecular nanovalve on the MS surface and two effectors, glucose oxidase and esterase, immobilized on the Au face. The nanodevice behaves as an enzymatic logical OR operator which is selectively fueled by the presence of D-glucose and ethyl butyrate.
View Article and Find Full Text PDFBranched gold nanoparticles were prepared by a seed-mediated approach using per-6-thio-6-deoxy-β-cyclodextrin capped gold nanospheres as seeds and a growth medium similar to those commonly employed to prepare gold nanorods, containing AgNO3, ascorbic acid and cetyltrimethylammonium bromide. Novel jack-shaped gold nanoparticles (102-105 nm) were obtained at a specific range of Ag(+) ion concentrations (62-102 μM). The crystalline structure of these nanoparticles was confirmed by high-resolution transmission electron microscopy.
View Article and Find Full Text PDFReduced graphene nanoparticles were prepared from graphene oxide through a two-step covalent modification approach. Graphene oxide was first enriched with reactive epoxy groups by anchoring (3-glycidyloxypropyl)trimethoxysilane at the hydroxyl groups located on the nanocarbon basal plane. Modified graphene oxide was further cross-linked and partially reduced by treatment with the fourth-generation ethylenediamine core polyamidoamine G-4 dendrimer producing graphene nanoparticles with crumpled paper-like morphology.
View Article and Find Full Text PDFA novel strategy for the construction of disposable amperometric affinity biosensors is described in this work. The approach uses a recombinant bacterial penicillin binding protein (PBP) tagged by an N-terminal hexahistidine tail which was immobilized onto Co(2+)-tetradentate nitrilotriacetic acid (NTA)-modified screen-printed carbon electrodes (SPCEs). The biosensor was employed for the specific detection and quantification of β-lactam antibiotics residues in milk, which was accomplished by means of a direct competitive assay using a tracer with horseradish peroxidase (HRP) for the enzymatic labeling.
View Article and Find Full Text PDFCysteamine core polyamidoamine G-4 dendron branched with β-cyclodextrins was chemisorbed on the surface of Au electrodes and further coated with Pt nanoparticles. Adamantane-modified glucose oxidase was subsequently immobilized on the nanostructured electrode surface by supramolecular association. This enzyme electrode was used to construct a reagentless amperometric biosensor for glucose, making use of the electrochemical oxidation of H2O2 generated in the enzyme reaction.
View Article and Find Full Text PDFThe electron ionization (EI) mass spectra of a series of bridgehead-substituted 3,3-dimethylnorbornan-2-ones, derived from natural (1R)-(+)-camphor, have been studied and their cleavage mechanisms rationalized on the basis of the substituent shifts as well as on the identification of relevant peaks through accurate mass measurements and collision-induced dissociation (CID) tandem mass spectrometric experiments. The fragmentation patterns are very dependent on both the structural nature and the electronic properties of the bridgehead substituent. The driving force for the main fragmentation pathways are competitive cleavages of the C(1)-C(2) and C(2)-C(3) bonds directed by the bridgehead substituent and either the gem-dimethyl or carbonyl groups.
View Article and Find Full Text PDF