Vine shoots hold promise as a biomass source for fermentable sugars with efficient fractionation and conversion processes. The study explores vine shoots as a biomass source for fermentable sugars through pretreatment with two deep eutectic solvents mixtures: choline chloride:lactic acid 1:5 (ChCl:LA) and choline chloride:ethylene glycol 1:2 (ChCl:EG). Pretreatment conditions, such as temperature/time, solid/liquid ratio, and biomass particle size, were studied.
View Article and Find Full Text PDFThe control of heat-resistant fungi (HRFs), which cause spoilage of heat-treated fruit products, is considered a challenge for the fruit juice and beverage industry and requires new strategies for the development of antifungal compounds. In this study, four antifungal proteins (AFPs) from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC), were evaluated against conidia from a representative collection of HRFs. A total of 19 strains from 16 different species belonging to the genera Aspergillus, Hamigera, Paecilomyces, Rasamsonia, Sarocladium, Talaromyces and Thermoascus were included in the study.
View Article and Find Full Text PDFBackground: Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation.
View Article and Find Full Text PDFAntifungal proteins (AFPs) from filamentous fungi have enormous potential as novel biomolecules for the control of fungal diseases. However, little is known about the biological roles of AFPs beyond their antifungal action. Penicillium expansum encodes three phylogenetically different AFPs (PeAfpA, PeAfpB and PeAfpC) with diverse profiles of antifungal activity.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2024
Fungal infections represent a significant health risk worldwide. Opportunistic infections caused by yeasts, particularly by Candida spp. and their virulent emerging isolates, have become a major threat to humans, with an increase in fatal cases of infections attributed to the lack of effective anti-yeast therapies and the emergence of fungal resistance to the currently applied drugs.
View Article and Find Full Text PDFThis work describes the chemical and structural characterization of a lignin-rich residue from the bioethanol production of olive stones and its use for nanostructures development by electrospinning and castor oil structuring. The olive stones were treated by sequential acid/steam explosion pretreatment, further pre-saccharification using a hydrolytic enzyme, and simultaneous saccharification and fermentation (PSSF). The chemical composition of olive stone lignin-rich residue (OSL) was evaluated by standard analytical methods, showing a high lignin content (81.
View Article and Find Full Text PDFAntifungal proteins (AFPs) from filamentous fungi offer the potential to control fungal infections that threaten human health and food safety. AFPs exhibit broad antifungal spectra against harmful fungi, but limited knowledge of their killing mechanism hinders their potential applicability. PeAfpA from Penicillium expansum shows strong antifungal potency against plant and human fungal pathogens and stands above other AFPs for being active against the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFFungal synthetic biology is a rapidly expanding field that aims to optimize the biotechnological exploitation of fungi through the generation of standard, ready-to-use genetic elements, and universal syntax and rules for contributory use by the fungal research community. Recently, an increasing number of synthetic biology toolkits have been developed and applied to filamentous fungi, which highlights the relevance of these organisms in the biotechnology field. The FungalBraid (FB) modular cloning platform enables interchangeability of DNA parts with the GoldenBraid (GB) platform, which is designed for plants, and other systems that are compatible with the standard Golden Gate cloning and syntax, and uses binary pCAMBIA-derived vectors to allow -mediated transformation of a wide range of fungal species.
View Article and Find Full Text PDFBackground: Horizontal gene transfer (HGT) is an evolutionary mechanism of adaptive importance, which has been deeply studied in wine S. cerevisiae strains, where those acquired genes conferred improved traits related to both transport and metabolism of the nutrients present in the grape must. However, little is known about HGT events that occurred in wild Saccharomyces yeasts and how they determine their phenotypes.
View Article and Find Full Text PDFAntifungal proteins (AFPs) from filamentous fungi are promising biomolecules to control fungal pathogens. Understanding their biological role and mode of action is essential for their future application. AfpB from the citrus fruit pathogen Penicillium digitatum is highly active against fungal phytopathogens, including its native fungus.
View Article and Find Full Text PDFThe complete deployment of a bio-based economy is essential to meet the United Nations' Sustainable Development Goals from the 2030 Agenda. In this context, food waste and lignocellulosic residues are considered low-cost feedstocks for obtaining industrially attractive products through biological processes. The effective conversion of these raw materials is, however, still challenging, since they are recalcitrant to bioprocessing and must be first treated to alter their physicochemical properties and ease the accessibility to their structural components.
View Article and Find Full Text PDFAntifungal proteins (AFPs) are promising antimicrobial compounds that represent a feasible alternative to fungicides. Penicillium expansum encodes three phylogenetically distinct AFPs (PeAfpA, PeAfpB and PeAfpC) which show different antifungal profiles and fruit protection effects. To gain knowledge about the structural determinants governing their activity, we solved the crystal structure of PeAfpB and rationally designed five PeAfpA::PeAfpB chimeras (chPeAFPV1-V5).
View Article and Find Full Text PDFPenicillium digitatum and Penicillium expansum are plant pathogenic fungi that cause the green and blue mold diseases, respectively, leading to serious postharvest economic losses worldwide. Moreover, P. expansum can produce mycotoxins, which are hazardous compounds to human and animal health.
View Article and Find Full Text PDFFungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P.
View Article and Find Full Text PDFThe global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides.
View Article and Find Full Text PDFphytopathogenic species provoke severe postharvest disease and economic losses. is the main pome fruit phytopathogen while and cause citrus green and blue mold, respectively. Control strategies rely on the use of synthetic fungicides, but the appearance of resistant strains and safety concerns have led to the search for new antifungals.
View Article and Find Full Text PDFOlive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses.
View Article and Find Full Text PDFAntifungal proteins (AFPs) from ascomycete fungi could help the development of antimycotics. However, little is known about their biological role or functional interactions with other fungal biomolecules. We previously reported that AfpB from the postharvest pathogen cannot be detected in the parental fungus yet is abundantly produced biotechnologically.
View Article and Find Full Text PDFAntifungal proteins (AFPs) offer a great potential as new biofungicides to control deleterious fungi. The phytopathogenic fungus Penicillium expansum encodes three phylogenetically distinct AFPs, PeAfpA, PeAfpB and PeAfpC. Here, PeAfpA, a potent in vitro self-inhibitory protein, was demonstrated to control the infection caused by P.
View Article and Find Full Text PDFFilamentous fungi produce small cysteine-rich proteins with potent, specific antifungal activity, offering the potential to fight fungal infections that severely threaten human health and food safety and security. The genome of the citrus postharvest fungal pathogen encodes one of these antifungal proteins, namely AfpB. Biotechnologically produced AfpB inhibited the growth of major pathogenic fungi at minimal concentrations, surprisingly including its parental fungus, and conferred protection to crop plants against fungal infections.
View Article and Find Full Text PDFSmall, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes promise treatment alternatives to licensed antifungal drugs. In this study, we characterized the Q176 antifungal protein C (PAFC), which is phylogenetically distinct to the other two antifungal proteins, PAF and PAFB, that are expressed by this biotechnologically important ascomycete. PAFC is secreted into the culture broth and is co-expressed with PAF and PAFB in the exudates of surface cultures.
View Article and Find Full Text PDFExo-inulinases are versatile enzymes that have gained attention in recent years due to their ability to hydrolyze linear and branched polyfructose chains found in inulines. Agavin, a branched inulin, is found in Agave plant, the raw matter to produce tequila. Our group has isolated several microbial strains from agave bagasse, an agro-industrial residue from tequila production that increases yearly.
View Article and Find Full Text PDF