Publications by authors named "Paloma Carrero"

Several brain disorders associated with neuroinflammation show sex differences in their incidence, onset, progression and/or outcome. The different regulation of the neuroinflammatory response in males and females could underlie these sex differences. In this study, we have explored whether reactive gliosis after a penetrating cortical injury exhibits sex differences.

View Article and Find Full Text PDF

Although neuroactive steroids exert neuroprotective actions in different experimental models of neurodegenerative diseases, including those of Alzheimer's disease (AD), their relationships with aged related physiologic and pathologic brain changes remain to be clarified. In this study the levels of pregnenolone, dehydroepiandrosterone, progesterone, dihydroprogesterone, tetrahydroprogesterone, isopregnanolone, testosterone, dihydrotestosterone, 5α-androstane-3α,17β-diol, 5α-androstane-3β,17β-diol, 17α-estradiol, and 17β-estradiol were assessed in the limbic region of young adult (7 months) and aged (24 months) male wild type and triple transgenic AD mice. Age related neuropathological changes in AD brains, such as β-amyloid accumulation and gliosis, were associated with modified levels of specific neuroactive steroids and particularly with changes in the levels of progesterone and testosterone metabolites.

View Article and Find Full Text PDF

Background: Stress during fetal life increases the risk of affective and immune disorders later in life. The altered peripheral immune response caused by prenatal stress may impact on brain function by the modification of local inflammation. In this study we have explored whether prenatal stress results in alterations in the immune response in the hippocampus of female mice during adult life.

View Article and Find Full Text PDF

Clinical studies suggest that aging may affect the neural outcome of estrogen therapy in postmenopausal women. In this study we have assessed whether age influences the behavioral outcome of estradiol therapy in rats. Animals were ovariectomized at 2 or 20 months of age.

View Article and Find Full Text PDF
Article Synopsis
  • After a brain injury, astrocytes change and express the protein vimentin, with previous research indicating that estradiol can reduce this reactive change.
  • *This study aimed to see if the selective estrogen receptor modulators raloxifene and tamoxifen have similar effects on astrocytes as estradiol, considering factors like aging and timing of hormone therapy post-ovariectomy.
  • *Results showed that reactive astrocytes increased with age and length of hormone depletion, but all groups benefited from the estrogenic treatments, highlighting their potential for managing astrogliosis across different age groups and hormone levels.
View Article and Find Full Text PDF

It has been previously reported that the neuroprotective hormone oestradiol reduces microglia inflammatory activity. The objective of this study was to test whether two selective oestrogen receptor modulators, tamoxifen and raloxifene, modulate in vivo the activation of microglia induced by the peripheral administration of lipopolysaccharide (LPS). Activation of microglia was assessed in the white matter of the cerebellum using immunoreactivity for major histocompatability complex-II.

View Article and Find Full Text PDF

The transition from adolescence to adulthood is accompanied by substantial plastic modifications in the cerebral cortex, including changes in the growth and retraction of neuronal processes and in the rate of synaptic formation and neuronal loss. Some of these plastic changes are prevented in female rats by prepubertal ovariectomy. The ovarian hormone estradiol modulates neuronal differentiation and survival and these effects are in part mediated by the interaction with insulin-like growth factor-I (IGF-I).

View Article and Find Full Text PDF

Maladaptive inflammation is a major suspect in progressive neurodegeneration, but the underlying mechanisms are difficult to envisage in part because reactive glial cells at lesion sites secrete both proinflammatory and anti-inflammatory mediators. We now report that astrocytes modulate neuronal resilience to inflammatory insults through the phosphatase calcineurin. In quiescent astrocytes, inflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha) recruits calcineurin to stimulate a canonical inflammatory pathway involving the transcription factors nuclear factor kappaB (NFkappaB) and nuclear factor of activated T-cells (NFAT).

View Article and Find Full Text PDF

Translocator protein (18 kDa) (TSPO), previously known as peripheral-type benzodiazepine receptor, is a critical component of the mitochondrial permeability transition pore. Brain inflammation results in the induction of the expression of TSPO in glial cells and some TSPO ligands decrease reactive gliosis after brain injury. However, since some TSPO ligands are neuroprotective, their effects on reactive gliosis may be the consequence of a reduced neurodegeneration.

View Article and Find Full Text PDF

The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5alpha-dihydroprogesterone (DHP) by the enzyme 5alpha-reductase. DHP is subsequently reduced to 3alpha,5alpha-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3alpha-hydroxysteroid dehydrogenase.

View Article and Find Full Text PDF

Soy extracts are widely used as an alternative to hormone replacement therapy for the treatment of menopausal symptoms. Soy phytoestrogens, such as genistein, may act on the nervous system, affecting mood, cognitive function and behavior. In addition, several studies suggest that soy phytoestrogens are neuroprotective.

View Article and Find Full Text PDF

Neuroprotective effects of estradiol are well characterized in animal experimental models. However, in humans, the outcome of estrogen treatment for cognitive function and neurological diseases is very controversial. Selective estrogen receptor modulators (SERMs) may represent an alternative to estrogen for the treatment or the prevention of neurodegenerative disorders.

View Article and Find Full Text PDF