The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (5-25 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins.
View Article and Find Full Text PDFThe fluorescence decays of a stereoregular head-to-tail RR-HT poly(3-hexylthiophene), P3HT, in methylcyclohexane (MCH) are described by sums of three or four exponential terms, respectively above and below -10 °C. In the high-temperature region, the polymer lifetime (ca. 500 ps) is accompanied by two shorter decay times (ca.
View Article and Find Full Text PDFThe red flavylium cations of anthocyanins form ground-state charge-transfer complexes with several naturally occurring electron-donor copigments, such as hydroxylated flavones and hydroxycinnamic or benzoic acids. Excitation of the 7-methoxy-4-methyl-flavylium-protocatechuic acid complex results in ultrafast (240 fs) internal conversion to the ground state of the complex by way of a low-lying charge-transfer state. Thus, both uncomplexed anthocyanins, whose excited state decays by fast (5-20 ps) excited-state proton transfer, and anthocyanin-copigment complexes have highly efficient mechanisms of deactivation that are consistent with the proposed protective role of anthocyanins against excess solar radiation in the vegetative tissues of plants.
View Article and Find Full Text PDFSynthetic and natural hydroxyflavylium salts are super-photoacids, exhibiting values of the rate constant for proton transfer to water in the excited state as high as 1.5 x 10(11) s(-1). The synthetic flavylium salt 4-carboxy-7-hydroxy-4'-methoxyflavylium chloride (CHMF) has an additional carboxyl group at the 4-position of the flavylium cation that deprotonates in the ground state at a lower pH (pK(a1) = 0.
View Article and Find Full Text PDFThe functionalized flavylium salt 6-hexyl-7-hydroxy-4-methyflavylium chloride (HHMF) was employed to probe some of the fundamental features of proton transfer reactions at the surface of anionic sodium dodecyl sulfate (SDS) and cationic hexadecyltrimethylammonium chloride (CTAC) micelles. In contrast to most ordinary flavylium salts, HHMF is insoluble in water, but readily incorporates into SDS and CTAC micelles. In the ground state, the rate constant for deprotonation of the acid form (AH+) of HHMF decreases 100-fold upon going from CTAC (kd = 3.
View Article and Find Full Text PDF