Publications by authors named "Palmer Taylor"

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity.

View Article and Find Full Text PDF

Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE.

View Article and Find Full Text PDF

A series of dipicolyl amine pyrimidines (DPPs) were previously identified as potential 7 agonists by means of a calcium influx assay in the presence of the positive allosteric modulator (PAM) 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596). The compounds lack the quaternary or strongly basic nitrogens of typical nicotinic agonists. Although differing in structure from typical nicotinic agonists, based on crystallographic data with the acetylcholine binding protein, they appeared to engage the site shared by such typical orthosteric agonists.

View Article and Find Full Text PDF

Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into NTX. One unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond.

View Article and Find Full Text PDF

Inhibition of acetylcholinesterase (AChE) by certain organophosphates (OPs) can be life-threatening and requires reactivating antidote accessibility to the peripheral and central nervous systems to reverse symptoms and enhance survival parameters. In considering dosing requirements for oxime antidotes in OP exposures that inactivate AChE, clearance of proton ionizable, zwitterionic antidotes is rapid and proceeds with largely the parent antidotal compound being cleared by renal transporters. Such transporters may also control disposition between target tissues and plasma as well as overall elimination from the body.

View Article and Find Full Text PDF

We detail here distinctive departures from lead classical cholinesterase re-activators, the pyridinium aldoximes, to achieve rapid CNS penetration and reactivation of AChE in the CNS (brain and spinal cord). Such reactivation is consistent with these non-canonical re-activators enhancing survival parameters in both mice and macaques following exposure to organophosphates. Thus, the ideal cholinesterase re-activator should show minimal toxicity, limited inhibitory activity in the absence of an organophosphate, and rapid CNS penetration, in addition to its nucleophilic potential at the target, the conjugated AChE active center.

View Article and Find Full Text PDF
Cholinergic Capsules and Academic Admonitions.

Annu Rev Pharmacol Toxicol

January 2021

Herein, I intend to capture highlights shared with my academic and research colleagues over the 60 years I devoted initially to my graduate and postdoctoral training and then to academic endeavors starting as an assistant professor in a new medical school at the University of California, San Diego (UCSD). During this period, the Department of Pharmacology emerged from a division within the Department of Medicine to become the first basic science department, solely within the School of Medicine at UCSD in 1979. As part of the school's plans to reorganize and to retain me at UCSD, I was appointed as founding chair.

View Article and Find Full Text PDF

Acetylcholine binding proteins (AChBPs), structural and functional surrogates of the extracellular binding domain of nicotinic acetylcholine receptor (nAChRs), in complex with various antagonists and agonists have provided detailed insights into the neurotransmitter binding site of nAChRs. The classical long-chain α-neurotoxins bungarotoxin (44-fold) and cobratoxin (7-fold) bind to Lymnaea stagnalis (Ls)-AChBP with higher affinity compared to Aplysia californica (Ac)-AChBP. In this study, we describe a novel long chain α-neurotoxin Drysdalin, which has higher binding affinity (7-fold) to Ac-AChBP when compared to Ls-AChBP.

View Article and Find Full Text PDF

Oxime antidotes regenerate organophosphate-inhibited acetylcholinesterase (AChE). Although they share a common mechanism of AChE reactivation, the rate and amount of oxime that enters the brain are critical to the efficacy, a process linked to the oxime structure and charge. Using a platform based on the organophosphate [ F]-VXS as a positron emission tomography tracer for active AChE, the in vivo distribution of [ F]-VXS was evaluated after an LD dose (250 μg/kg) of the organophosphate paraoxon (POX) and following oximes as antidotes.

View Article and Find Full Text PDF

It has been almost 20 years since the discovery and crystallization of a structural surrogate, the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP), comprising the extracellular domain of the nicotinic acetylcholine receptors (nAChRs). Structural characterization of this soluble protein has increased our understanding of the requirements for agonist and antagonist interactions at the ligand recognition site of the nAChRs. Application can be extended to orthologs in the pentameric ligand-gated ion channel superfamily, encompassing receptors that depolarize or hyperpolarize upon neurotransmitter association.

View Article and Find Full Text PDF

Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime-based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is a pivotal enzyme in neurotransmission. Its inhibition leads to cholinergic crises and could ultimately result in death. A related enzyme, butyrylcholinesterase (BChE), may act in the CNS as a co-regulator in terminating nerve impulses and is a natural plasma scavenger upon exposure to organophosphate (OP) nerve agents that irreversibly inhibit both enzymes.

View Article and Find Full Text PDF

A lack of selectivity of classical agonists for the nicotinic acetylcholine receptors (nAChR) has prompted us to identify and develop a distinct scaffold of α7 nAChR-selective ligands. Noncanonical 2,4,6-substituted pyrimidine analogues were framed around compound 40 for a structure-activity relationship study. The new lead compounds activate selectively the α7 nAChRs with EC's between 30 and 140 nM in a PNU-120596-dependent, cell-based calcium influx assay.

View Article and Find Full Text PDF

In this issue of Structure,Ranaivoson et al. (2019) highlight neuronal adhesion molecules with an extracellular exposure in synapses that have the potential to open new avenues in the study of the development and organization of the nervous system and their role in health and disease.

View Article and Find Full Text PDF

Structure-guided design of novel pharmacologically active molecules relies at least in part on functionally relevant accuracy of macromolecular structures for template based drug design. Currently, about 95% of all macromolecular X-ray structures available in the PDB (Protein Data Bank) were obtained from diffraction experiments at low, cryogenic temperatures. However, it is known that functionally relevant conformations of both macromolecules and pharmacological ligands can differ at higher, physiological temperatures.

View Article and Find Full Text PDF

Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis.

View Article and Find Full Text PDF

Since the development in the 1950's of 2-PAM (Pralidoxime), an antidote that reactivates organophosphate conjugated acetylcholinesterase in target tissues upon pesticide or nerve agent exposure, improvements in antidotal therapy have largely involved congeneric pyridinium aldoximes. Despite seminal advances in detailing the structures of the cholinesterases as the primary target site, progress with small molecule antidotes has yet to define a superior agent. Two major limitations are immediately apparent.

View Article and Find Full Text PDF

Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE), an enzyme that degrades the neurotransmitter acetylcholine, when covalently inhibited by organophosphorus compounds (OPs), such as nerve agents and pesticides, can be reactivated by oximes. However, tabun remains among the most dangerous nerve agents due to the low reactivation efficacy of standard pyridinium aldoxime antidotes. Therefore, finding an optimal reactivator for prophylaxis against tabun toxicity and for post-exposure treatment is a continued challenge.

View Article and Find Full Text PDF

In the development of antidotal therapy for treatment of organophosphate exposure from pesticides used in agriculture and nerve agents insidiously employed in terrorism, the alkylpyridinium aldoximes have received primary attention since their early development by I. B. Wilson in the 1950s.

View Article and Find Full Text PDF

The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors.

View Article and Find Full Text PDF

Fatalities from organophosphate (OP) insecticide result from both occupational and deliberate exposure; significantly impacting human health. Like nerve agents, insecticides are neurotoxins which target and inhibit acetylcholinesterases (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with a pyridinium aldoxime e.

View Article and Find Full Text PDF
Article Synopsis
  • Organophosphate (OP) nerve agents and pesticides harm the nervous system by inhibiting acetylcholinesterases (AChE), prompting research into countermeasures that reactivate or prevent this inhibition.
  • A novel oxime, RS194B, effectively reactivated AChE and butyrylcholinesterase (BChE) in macaques in vitro and showed significant reversal of sarin toxicity symptoms in vivo.
  • Administering RS194B along with atropine after sarin exposure led to rapid recovery from severe symptoms, supporting its potential as a treatment for humans and validating the macaque model for further research.
View Article and Find Full Text PDF