A series of N(6)-substituted-5'-C-(2-ethyl-2H-tetrazol-5-yl)-adenosine and 2-chloro-adenosine derivatives was synthesized as novel, highly potent dual acting hA1AR agonists and hA3AR antagonists, potentially useful in the treatment of glaucoma and other diseases. The best affinity and selectivity profiles were achieved by N(6)-substitution with a 2-fluoro-4-chloro-phenyl- or a methyl- group. Through an in silico receptor-driven approach, the molecular bases of the hA1- and hA3AR recognition and activation of this series of 5'-C-ethyl-tetrazolyl derivatives were explained.
View Article and Find Full Text PDFWe synthesized a series of serum-stable covalently linked drugs derived from 3'-C-methyladenosine (3'-Me-Ado) and valproic acid (VPA), which are ribonucleotide reductase (RR) and histone deacetylase (HDAC) inhibitors, respectively. While the combination of free VPA and 3'-Me-Ado resulted in a clear synergistic apoptotic effect, the conjugates had lost their HDAC inhibitory effect as well as the corresponding apoptotic activity. Two of the analogs, 2',5'-bis-O-valproyl-3'-C-methyladenosine (A160) and 5'-O-valproyl-3'-C-methyladenosine (A167), showed promising cytotoxic activities against human hematological and solid cancer cell lines.
View Article and Find Full Text PDFThis study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A(1) receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.
View Article and Find Full Text PDFInosine monophosphate dehydrogenase (IMPDH), an NAD-dependent enzyme that controls de novo synthesis of guanine nucleotides, has received considerable interest in recent years as an important target enzyme, not only for the discovery of anticancer drugs, but also for antiviral, antiparasitic, and immunosuppressive chemotherapy. The field of IMPDH inhibitor research is highly important for providing potential therapeutics against a validated target for disease intervention. This patent review examines the chemical structures and biological activities of recently reported IMPDH inhibitors.
View Article and Find Full Text PDFA series of N6-aminopurine-9-β-D-ribonucleosides and ribose-modified 3'-C-methyl analogues substituted at N6-position with a small group like hydroxy, methoxy or amino group or at C2(N6) position have been synthesized and tested against a panel of human leukemia and carcinoma cell lines. N6-Hydrazino-9-β-D-ribofuranosyl-purine (5) displayed the best antiproliferative activity in the low micromolar or submicromolar range against all tested tumor cell lines. The activity of this nucleoside is related in part to ribonucleotide reductase inhibition.
View Article and Find Full Text PDFDiadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage.
View Article and Find Full Text PDFTo further investigate new potent and selective human A(1) adenosine receptor agonists, we have synthesized a series of 5'-chloro-5'-deoxy- and 5'-(2-fluorophenylthio)-5'-deoxy-N(6)-cycloalkyl(bicycloalkyl)-substituted adenosine and 2'-C-methyladenosine derivatives. These compounds were evaluated for affinity and efficacy at human A(1), A(2A), A(2B), and A(3) adenosine receptors. In the series of N(6)-cyclopentyl- and N(6)-(endo-norborn-2-yl)adenosine derivatives, 5'-chloro-5'-deoxy-CPA (1) and 5'-chloro-5'-deoxy-(+/-)-ENBA (3) displayed the highest affinity in the subnanomolar range and relevant selectivity for hA(1) vs the other human receptor subtypes.
View Article and Find Full Text PDFA series of cycloalkyl, bicycloalkyl, aryl, and heteroaryl N (6)-substituted derivatives of the antitumor agent 3'- C-methyladenosine (3'-Me-Ado), an inhibitor of the alpha Rnr1 subunit of mammalian ribonucleotide reductase (RR), were synthesized. The cytotoxicity of these compounds was evaluated against a panel of human leukemia and carcinoma cell lines and compared to that of some corresponding N (6)-substituted adenosine analogues. N (6)-cycloalkyl-3'- C-methylribonucleosides 2- 7 and N (6)-phenyl analogue 8 were found to inhibit the proliferation of K562 leukemia cells.
View Article and Find Full Text PDFThe phosphate, uracil, and ribose moieties of uracil nucleotides were varied structurally for evaluation of agonist activity at the human P2Y(2), P2Y(4), and P2Y(6) receptors. The 2-thio modification, found previously to enhance P2Y(2) receptor potency, could be combined with other favorable modifications to produce novel molecules that exhibit high potencies and receptor selectivities. Phosphonomethylene bridges introduced for stability in analogues of UDP, UTP, and uracil dinucleotides markedly reduced potency.
View Article and Find Full Text PDFA series of 5'-carbamoyl and 5'-thionocarbamoyl derivatives of 2'-C-methyl analogues of the A(1) adenosine receptor (A(1)AR) full agonists N(6)-cyclopentyladenosine (CPA), 2-chloro-N(6)-cyclopentyladenosine (CCPA), N(6)-[3-(R)-tetrahydrofuranyl]adenosine (tecadenoson), and 2-chloro analogue (2-Cl-tecadenoson) was synthesized and evaluated for their affinity for adenosine receptor subtypes from bovine, porcine, and human species. In the N(6)-cyclopentylamino series, the 5'-substituted derivatives showed a reduced affinity at the bovine A(1)AR compared to the parent compounds; however, the selectivity for A(1) versus A(2A) receptor was retained or increased. The corresponding N(6)-3-(R)-tetrahydrofuranylamino analogues displayed a very low affinity toward the bovine A(1)AR.
View Article and Find Full Text PDFBiochemistry
April 2007
Initial-rate and product inhibition studies revealed distinctive ordered ternary complex kinetic mechanisms, substrate specificities, and metal ion preferences for the three isozymes of human nicotinamide mononucleotide adenylyl-transferase (NMNAT, EC 2.7.7.
View Article and Find Full Text PDFObjectives: (i) To generate a new heterodinucleotide (3TCpPMPA) comprising the drugs lamivudine and tenofovir which have been shown to act synergistically and (ii) to protect macrophages from 'de novo' HIV-1-infection through its administration.
Methods: 3TCpPMPA was obtained by coupling the morpholidate derivative of tenofovir with the mono n-tri-butylammonium salt of lamivudine 5'-monophosphate. Stability and metabolism were evaluated in vitro and in vivo in mice.
New effective cytotoxic agents and combinations are urgently needed in cancer treatment. The enzyme inosine monophosphate dehydrogenase is a potentially useful target for drug development, since its activity has been shown to be amplified in malignant cells. Thiophenfurin, an inhibitor of the enzyme synthesized by us, is endowed with a significant apoptotic activity in promyelocytic leukaemia HL60 cells.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
March 2006
Synthesis, conformational analysis and antitumor evaluation of 2'- and 3'-C-methyl analogues of mizoribine (bredinine, 4-carbamoyl-1-beta-D-ribofuranosylimidazole-5-olate) are reported.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2005
NAD analogs modified at the ribose adenylyl moiety, named N-2'-MeAD and Na-2'-MeAD, were synthesized as ligands of pyridine nucleotide (NMN/NaMN) adenylyltransferase (NMNAT). Both dinucleotides resulted selective inhibitors against human NMNAT-3 isoenzyme.
View Article and Find Full Text PDFA series of adenosine derivatives substituted at the 1'-, 2'-, or 3'-position of the ribose ring with a methyl group was synthesized and evaluated for antitumor activity. From this study 3'-C-methyladenosine (3'-Me-Ado) emerged as the most active compound, showing activity against human myelogenous leukemia K562, multidrug resistant human leukemia K562IU, human promyelocytic leukemia HL-60, human colon carcinoma HT-29, and human breast carcinoma MCF-7 cell lines with IC(50) values ranging from 11 to 38 muM. Structure-activity relationship studies showed that the structure of 3'-Me-Ado is crucial for the activity.
View Article and Find Full Text PDFA number of 3'-C-methyl analogues of selective adenosine receptor agonists such as CPA, CHA, CCPA, 2'-Me-CCPA, NECA, and IB-MECA was synthesized to further investigate the subdomain of the receptor that binds the ribose moiety of the ligands. Affinity data at A(1), A(2A), and A(3) receptors in bovine brain membranes showed that the 3'-C-modification in adenosine resulted in a decrease of the affinity at all three receptor subtypes. When this modification was combined with N(6)-substitution with groups that induce high potency and selectivity at A(1) receptor, the affinity and selectivity were increased.
View Article and Find Full Text PDFThiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity.
View Article and Find Full Text PDFThe beta-anomers of N-ribofuranosylnicotine-3-carboxamide (beta-NAR) and its nicotinic acid analog (beta-NaR) were obtained by stereoselective synthesis via glycosylation of the presilylated bases under Vorbruggen's protocol. A NAR analog, methylated in position 3 of the ribosylic moiety, is also reported.
View Article and Find Full Text PDFTenofovir [9-(R)-2-(phosphonomethoxypropyl)adenine (PMPA)] and zidovudine [azidothymidine (AZT)] are potent anti-HIV agents that have shown a strong synergy in in vitro studies. In this paper we have investigated both the potentiality of this synergy in vivo and the possibility to administer AZT and PMPA simultaneously as a single drug AZTpPMPA. The pharmacokinetic studies reported here have shown that AZTpPMPA administered intraperitoneally in mice performs as a prodrug, providing a slow delivery of AZT and PMPA in circulation.
View Article and Find Full Text PDF9-(2-Phosphonylmethoxyethyl)adenine (PMEA) is an antiviral drug with activity against herpes viruses, Epstein-Barr virus and retroviruses, including the human immunodeficiency virus. Unfortunately, oral PMEA administration, as required for long-term therapy, is hindered by its low bioavailability. In the present study, the synthesis, oral bioavailability and antiretroviral activity of a new prodrug of PMEA, consisting of two molecules of PMEA bound together by a P-O-P bond (Bis-PMEA), are reported.
View Article and Find Full Text PDFThe 2-amino-benzoylthiophene derivatives LUF 5468 [(2-amino-4-ethyl-5-methyl-3-thienyl)[3-(trifluoromethyl)phenyl]methanone] and LUF 5484 [(2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)(3,4-dichlorophenyl)methanone] have been shown to allosterically enhance the adenosine A(1) receptor agonist binding. We report a thermodynamic analysis of the agonist affinity obtained at human adenosine A(1) receptors, in the presence and absence of LUF 5468 and LUF 5484. Moreover, an analysis of the temperature dependence for association and dissociation rates of N(6)-cyclohexyladenosine (CHA) binding was performed in the absence and presence of LUF 5484.
View Article and Find Full Text PDF1'-C-Methyl analogues of adenosine and selective adenosine A(1) receptor agonists, such as N-[(1R)-1-methyl-2-phenylethyl]adenosine ((R)-PIA) and N(6)-cyclopentyladenosine, were synthesized to further investigate the subdomain that binds the ribose moiety. Binding affinities of these new compounds at A(1) and A(2A) receptors in rat brain membranes and at A(3) in rat testis membranes were determined and compared. It was found that the 1'-C-methyl modification in adenosine resulted in a decrease of affinity, particularly at A(1) and A(2A) receptors.
View Article and Find Full Text PDF