Publications by authors named "Pallavur Sivakumar"

Unlabelled: In normal cells, binding of the transmembrane protein CD47 to signal regulatory protein-α (SIRPα) on macrophages induces an antiphagocytic signal. Tumor cells hijack this pathway and overexpress CD47 to evade immune destruction. Macrophage antitumor activity can be restored by simultaneously blocking the CD47-SIRPα signaling axis and inducing a prophagocytic signal via tumor-opsonizing antibodies.

View Article and Find Full Text PDF

CaMKK2 signals through AMPK-dependent and AMPK-independent pathways to trigger cellular outputs including proliferation, differentiation, and migration, resulting in changes to metabolism, bone mass accrual, neuronal function, hematopoiesis, and immunity. CAMKK2 is upregulated in tumors including hepatocellular carcinoma, prostate, breast, and gastric cancer, and genetic deletion in myeloid cells results in increased antitumor immunity in several syngeneic models. Validation of the biological roles of CaMKK2 has relied on genetic deletion or small molecule inhibitors with activity against several biological targets.

View Article and Find Full Text PDF

Failure to clear antigens causes CD8 T cells to become increasingly hypo-functional, a state known as exhaustion. We combined manually extracted information from published literature with gene expression data from diverse model systems to infer a set of molecular regulatory interactions that underpin exhaustion. Topological analysis and simulation modeling of the network suggests CD8 T cells undergo 2 major transitions in state following stimulation.

View Article and Find Full Text PDF

This review describes the IL-20 family of cytokines in rheumatoid arthritis (RA) and spondyloartrhitits (SpA) including psoriatic arthritis. The IL-20 receptor (R) cytokines IL-19, IL-20, and IL-24 are produced in both the peripheral blood and the synovial joint and are induced by Toll-like receptor ligands and autoantibody-associated immune complexes in monocytes. IL-19 seems to have anti-inflammatory functions in arthritis.

View Article and Find Full Text PDF

Rituximab, a monoclonal antibody targeting CD20 on B cells, is currently used to treat many subtypes of B cell lymphomas. However, treatment is not curative and response rates are variable. Recombinant interleukin-21 (rIL-21) is a cytokine that enhances immune effector function and affects both primary and transformed B cell differentiation.

View Article and Find Full Text PDF

Interleukin 21 (IL21) is a T-cell-derived 4-helix-bundle cytokine that has sequence homology to the IL2 family. Recombinant human interleukin 2 (rIL2) is approved for the treatment of metastatic melanoma and renal cell carcinoma. However, toxicity of rIL2, including induction of vascular leak syndrome (VLS), has limited use of this cytokine to a small proportion of eligible patients.

View Article and Find Full Text PDF

Targeting angiogenesis is a promising approach to the treatment of solid tumors and age-related macular degeneration (AMD). Inhibition of vascularization has been validated by the successful marketing of monoclonal antibodies (mAbs) that target specific growth factors or their receptors, but there is considerable room for improvement in existing therapies. Combination of mAbs targeting both the VEGF and PDGF pathways has the potential to increase the efficacy of anti-angiogenic therapy without the accompanying toxicities of tyrosine kinase inhibitors and the inability to combine efficiently with traditional chemotherapeutics.

View Article and Find Full Text PDF

IL-21 has antitumor activity through actions on NK cells and CD8(+) T cells, and is currently in clinical development for the treatment of cancer. However, no studies have addressed the role of endogenous IL-21 in tumor immunity. In this study, we have studied both primary and secondary immune responses in IL-21(-/-) and IL-21R(-/-) mice against several experimental tumors.

View Article and Find Full Text PDF

Interleukin-21 (IL-21) enhances T helper 1 (Th1) and Th17 differentiation while inhibiting the conversion of inducible regulatory T cells (Tregs) from naive T cells. To determine the role of IL-21 in graft-versus-host disease (GVHD), anti-IL-21 antibody (Ab) was given to recipients of CD25(-)CD4(+) or CD4(+) and CD8(+) T-effectors. IL-21 neutralization attenuated GVHD-related weight loss and prolonged survival.

View Article and Find Full Text PDF

Interleukin-21 (IL-21) is a cytokine with structural and sequence homology to IL-2 and IL-15 that has antitumor activity alone in mouse experimental tumor models and a tolerable safety profile in phase I trials in patients with metastatic melanoma and renal cell carcinoma. Several monoclonal antibodies (mAb) targeted at tumor-associated antigens also have improved antitumor activities in mice when used in combination with IL-21. Recently, we described a rational three antibody-based approach (triple mAb, TrimAb) to eradicating established mouse tumors that required the generation of tumor-reactive CD8(+) T cells and IFN-gamma.

View Article and Find Full Text PDF

In the past 20 years researchers have attempted to activate the host immune defence system to kill tumour cells and eradicate cancer. In some cases, the response of patients to immunotherapy has been extremely successful; however, other trials have shown disappointing results, and so there is a clear need for more effective therapies that can effectively adjunct conventional approaches. Interleukin 21 (IL21) is a new immune-stimulating cytokine that has demonstrated antitumour activity in several preclinical models, and has recently undergone Phase I trials in metastatic melanoma and renal cell carcinoma.

View Article and Find Full Text PDF

Interleukin-21 (IL-21) is a cytokine with structural and sequence homology to IL-2 and IL-15, yet possesses several biological properties distinct from these cytokines. IL-21 is produced mainly by activated CD4(+) T cells and natural killer T cells and mediates its activity by binding to the IL-21 receptor (IL-21R), consisting of an IL-21-specific alpha chain (IL-21Ralpha; JAK/STAT) that heterodimerizes with the common gamma chain (CD132). Intracellular signaling occurs through the Janus-activated kinase/signal transducer and activator of transcription pathways.

View Article and Find Full Text PDF

Interleukin-28A (IL-28A), IL-28B and IL-29 are a family of class II cytokines that stimulate antiviral responses through a heterodimeric receptor that is distinct from the type I interferon (IFN) receptor. To better understand how this newly described family of cytokines regulates the antiviral state, we compared various cellular responses elicited by IL-29 and IFN-alpha. Here we show that these cytokines stimulate similar patterns of signal transducer and activator of transcription 1 (STAT-1), -2, -3, and -5 phosphorylation and nearly identical patterns of gene expression when analyzed in two distinct cell types by microarray analysis.

View Article and Find Full Text PDF

Tumor cell apoptosis is the basis of many cancer therapies, and tumor-specific T cells are the principal effectors of successful anti-tumor immunotherapies. In this study, we show that induction of tumor cell apoptosis by agonistic mAb against DR5, combined with delayed IL-21 treatment, suppressed tumor growth and pre-established tumor metastases. Synergistic effects of the combination were observed in several tumor models where the target tumor was sensitive to DR5-mediated apoptosis.

View Article and Find Full Text PDF

IL-21 is a cytokine that can promote the anti-tumor responses of the innate and adaptive immune system. Mice treated with IL-21 reject tumor cells more efficiently, and a higher percentage of mice remain tumor-free compared with untreated controls. In this study, we demonstrate that in certain tumor models IL-21-enhanced tumor rejection is NKG2D dependent.

View Article and Find Full Text PDF

Cytokines and their receptors represent key targets for therapeutic intervention. Ligands are being used to supplement cell numbers that become depleted as a result of disease (organ failure, infection) or subsequent disease treatments (i.e.

View Article and Find Full Text PDF

Both naive and memory T cells undergo antigen-independent proliferation after transfer into a T cell-depleted environment (acute homeostatic proliferation), whereas only memory T cells slowly divide in a full T cell compartment (basal proliferation). We show, first, that naive and memory CD8+ T cells have different cytokine requirements for acute homeostatic proliferation. Interleukin (IL)-7 receptor(R)alpha-mediated signals were obligatory for proliferation of naive T cells in lymphopenic hosts, whereas IL-15 did not influence their division.

View Article and Find Full Text PDF