Publications by authors named "Pallavi Phartiyal"

Private and political interests routinely conspire to sideline and misrepresent science and evidence in the public policy process. The Center for Science and Democracy, a new initiative at the Union of Concerned Scientists, endeavors to change this dynamic to strengthen the role of science in decision making.

View Article and Find Full Text PDF

Cardiac I Kr is a critical repolarizing current in the heart and a target for inherited and acquired long-QT syndrome (LQTS). Biochemical and functional studies have demonstrated that I Kr channels are heteromers composed of both hERG 1a and 1b subunits, yet our current understanding of I Kr functional properties derives primarily from studies of homooligomers of the original hERG 1a isolate. Here, we examine currents produced by hERG 1a and 1a/1b channels expressed in HEK-293 cells at near-physiological temperatures.

View Article and Find Full Text PDF

Defects in the trafficking of subunits encoded by the human ether-à-go-go-related gene (hERG1) can lead to catastrophic arrhythmias and sudden cardiac death due to a reduction in I(Kr)-mediated repolarization. Native I(Kr) channels are composed of two alpha subunits, hERG 1a and 1b. In heterologous expression systems, hERG 1b subunits efficiently produce current only in heteromeric combination with hERG 1a.

View Article and Find Full Text PDF

Soybean seeds are a major source of protein, but contain low levels of sulfur-containing amino acids. With the objective of studying the sulfur assimilation pathway of soybean, a full-length cDNA clone for 5'-adenylylsulfate reductase (APS reductase) was isolated and characterized. The cDNA clone contained an open reading frame of 1414 bp encoding a 52 kDa protein with a N-terminal chloroplast/plastid transit peptide.

View Article and Find Full Text PDF

Alternate transcripts of the human ether-à-go-go-related gene (hERG1) encode two subunits, hERG 1a and 1b, which form potassium channels regulating cardiac repolarization, neuronal firing frequency, and neoplastic cell growth. The 1a and 1b subunits are identical except for their unique, cytoplasmic N termini, and they readily co-assemble in heterologous and native systems. We tested the hypothesis that interactions of nascent N termini promote heteromeric assembly of 1a and 1b subunits.

View Article and Find Full Text PDF

Soybeans are a rich source of protein and a key feed ingredient in livestock production, but lack sufficient levels of cysteine and methionine to meet the nutritional demands of swine or poultry as feed components. Although engineering the sulfur assimilatory pathway could lead to increased sulfur-containing amino acid content, little is known about this pathway in legumes. Here, we describe the cloning and characterization of soybean ATP sulfurylase (ATPS), which acts as the metabolic entry point into the sulfur assimilation pathway.

View Article and Find Full Text PDF