Publications by authors named "Pallavi Daggumati"

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone. However, there remains little consensus on the mechanism(s) of response with this combination.

View Article and Find Full Text PDF

Molecular diagnostics have significantly advanced the early detection of diseases, where the electrochemical sensing of biomarkers (e.g., DNA, RNA, proteins) using multiple electrode arrays (MEAs) has shown considerable promise.

View Article and Find Full Text PDF

Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport.

View Article and Find Full Text PDF

Nucleic-acid-based biosensors have enabled rapid and sensitive detection of pathogenic targets; however, these devices often require purified nucleic acids for analysis since the constituents of complex biological fluids adversely affect sensor performance. This purification step is typically performed outside the device, thereby increasing sample-to-answer time and introducing contaminants. We report a novel approach using a multifunctional matrix, nanoporous gold (np-Au), which enables both detection of specific target sequences in a complex biological sample and their subsequent purification.

View Article and Find Full Text PDF

This paper illustrates the effect of substrate topography on morphology evolution in nanoporous gold (np-Au) thin films. One micron-high silicon ridges with widths varying between 150 nm to 50 µm were fabricated and coated with 500 nm-thick np-Au films obtained by dealloying sputtered gold-silver alloy films. Analysis of scanning electron micrographs of the np-Au films following dealloying and thermal annealing revealed two distinct regimes where the ratio of film thickness to ridge width determines the morphological evolution of np-Au films.

View Article and Find Full Text PDF

Electrochemical nucleic acid sensors are promising tools for point-of-care diagnostic platforms with their facile integration with electronics and scalability. However, nucleic acid detection in complex biological fluids is challenging as biomolecules nonspecifically adsorb on the electrode surface and adversely affect the sensor performance by obscuring the transport of analytes and redox species to the electrode. We report that nanoporous gold (np-Au) electrodes, prepared by a microfabrication-compatible self-assembly process and functionalized with DNA probes, enabled detection of target DNA molecules (10-200 nM) in physiologically relevant complex media (bovine serum albumin and fetal bovine serum).

View Article and Find Full Text PDF

Advances in materials science and chemistry have led to the development of a wide range of nanostructured materials for building novel electrochemical biosensors. A systematic understanding of the challenges related to electrode morphology involved in designing such sensors is essential for developing effective biosensing tools. In this study, we use nanoporous gold (np-Au) thin film electrode coatings with submicrometer thicknesses, as a model system to investigate the influence of nanostructuring on DNA-methylene blue (MB) interactions and their application to DNA biosensors.

View Article and Find Full Text PDF

Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent.

View Article and Find Full Text PDF

We present a novel method to fabricate flexible and tunable plasmonic nanostructures based on combination of soft lithography and nanosphere lithography, and perform a comprehensive structural and optical characterization of these structures. Spherical latex particles are uniformly deposited on glass slides and used as molds for polydimethylsiloxane to obtain nanovoid structures. The diameter and depth of the nanostructures are controlled by the size of the latex particles.

View Article and Find Full Text PDF

Nanostructured materials with feature sizes in tens of nanometers have enhanced the performance of several technologies, including fuel cells, biosensors, biomedical device coatings, and drug delivery tools. Nanoporous gold (np-Au), produced by a nano-scale self-assembly process, is a relatively new material that exhibits large effective surface area, high electrical conductivity, and catalytic activity. These properties have made np-Au an attractive material to scientific community.

View Article and Find Full Text PDF